Author Archive

NEMB NanoEngineering for Medicine and Biology Conference 2018

NEMB NanoEngineering for Medicine and Biology Conference

Key dates

Conference:
August 21-24, 2018

Exhibition:
August 22-23, 2018

Omni Los Angeles Hotel, California Plaza, CA, USA

NEMB will be an opportunity for leading experts to discuss the integration of engineering, materials science and Nanotechnology in addressing fundamental problems in biology and medicine. The confirmed list of plenary speakers can be found on the conference websiteLab on a Chip Editor-in-Chief, Abe Lee will be chairing the conference.

Submit your abstracts before 21st May by following the link to registration portal here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Edmond Young

We are delighted to introduce our latest Lab on a Chip Emerging Investigator, Edmond Young!

Dr. Edmond Young joined the Department of Mechanical & Industrial Engineering at the University of Toronto as an Assistant Professor in January 2013. He received his BASc (2001) and MASc (2003) in Mechanical Engineering at the University of British Columbia, and his PhD in Mechanical and Biomedical Engineering at the University of Toronto (2008). He was a postdoctoral fellow at the University of Wisconsin-Madison from 2009 to 2012, working at the Wisconsin Institute for Medical Research (WIMR). Professor Young’s research interests focus on the development of microscale technologies for cell biology applications, with emphasis on creating engineered models that mimic the cell and tissue microenvironments in both healthy and diseased animals. He received the Governor General’s Gold Medal and the Norman F. Moody Award for academic excellence in 2009, the MIE Early Career Teaching Award in 2015, the Ontario Early Researcher Award and Connaught New Investigator Award in 2016, and has been recognized as an Outstanding Reviewer for Lab on a Chip in both 2016 and 2017.

Read Edmond’s Emerging Investigator series paper “Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions” and find out more about him in the interview below:

Your recent Emerging Investigator Series paper focuses on lung airway-on-a-chip. How has your research evolved from your first article to this most recent article?

This is actually our first article on this specific project, and we’re excited to share these results with the Lab on a Chip readership, and others doing lung-on-a-chip research. I can think back to a few articles on thermoplastic microfabrication that our lab published (Guckenberger et al., Lab Chip, 2015; Wan et al., Lab Chip, 2015; Wan et al., JoVE, 2017), which really enabled us to fabricate our current airway-on-a-chip device consistently and repeatably. Developing reliable fabrication methods gave us the confidence needed to do these long-term cultures without constantly worrying about fabrication challenges. Now, our lab can fabricate and keep devices “in stock” well ahead of the biology experiments, and that in itself has been a bit of an evolution in our lab and also in the field.

What aspect of your work are you most excited about at the moment?

I’m most excited about the ongoing collaborations with engineers and doctors who are interested in using the platform for their own work. The technology still has a lot of room for development, but hearing how the system may be applied to lung research, and potentially other biology questions, is very exciting and motivating.

In your opinion, what is the biggest impact your developed lung airway-on-a-chip could have on our understanding of chronic lung diseases?

I think the biggest impact will be learning about the differences in biological responses of the various in vitro and ex vivo airway models, against which we plan to benchmark our model. The promise of organ-on-a-chip technology lies in its ability to mimic human tissue more accurately, and if our model can continue to advance as planned, we envision making new observations with our device that could not have been made with conventional models. And if we do find interesting differences, it will build on the growing evidence that traditional platforms such as 2D Transwells for coculture do not properly recapitulate the in vivo microenvironment. Many scientists will need to rethink their approach to in vitro experiments (if they haven’t done so already), and decide what models are most representative and most useful.

What do you find most challenging about your research?

The most challenging aspect of my research overall is trying to keep pace with the field. It is a rapidly evolving area of research with many amazing scientists and engineers making important contributions. Research takes time and patience, so another constant challenge is managing students who are just learning about the effort, resilience, and patience needed to make something work in research. But it’s well worth it when you see the results, both in terms of the research and in terms of student development.

In which upcoming conferences or events may our readers meet you?

I’ll be in Whistler from May 9-11, 2018 for an Emerging Technologies Conference, back in Toronto to co-chair the Ontario-on-a-Chip Symposium from May 24-25, 2018 (Lab on a Chip is our sponsor this year!), and plan to be at microTAS 2018 in Taiwan.

How do you spend your spare time?

I play a little tennis (seasonally in Toronto’s climate), but my latest source of amusement when I have spare time is my 11-month-old daughter Amelia. When she’s old enough, I will surely convince her to get into tennis (and hockey) so that her dad can live vicariously through her athletic pursuits! And if she happens to fall in love with research, I’d be pleased with that too.

Which profession would you choose if you were not a scientist?

I considered being an architect when I was younger, and I still get excited when I hear of the latest buildings and structures around the world that are being built. I like the technical engineering aspects of it, of course, but I also like how they define the skyline of big cities, and how art, culture, and engineering all come together in some of the world’s most beautiful architecture.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Surround yourself with great people. That applies to your friends, mentors, colleagues, and importantly, your students. And let them all challenge you so that your ideas are pressure-tested.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ISMM 2018

The ISMM 2018 conference takes place from Tues 19 – Thurs 21 June, 2018 in Busan, Korea

Key deadlines

Notice of Acceptance for Oral Presentation: 27th March 2018 – 3rd April 2018
Early Registration Deadline: 24th April 2018
Abstract deadline for Poster Presentation: 8th May 2018

Plenary speakers will include Professor Abraham Lee and Professor Roland Zengerie. For further information on how to register, specific topics of interest, venue and other listed speakers, please see the conference website.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

2018 Joint Ontario-on-a-Chip and TOeP Symposium

2018 Joint Ontario-on-a-Chip and TOeP Symposium will take place May 24 – 25, 2018

Keynote symposium speakers:

Prof. Sabeth Verpoorte 

Prof. Howard Stone 

Dates and Location

Abstract submission: April 28th, 2018

Registration: Early-bird registration will end April 15th, 2018

Organisers:

Dr. Scott Tsai, Department of Mechanical & Industrial Engineering, Ryerson University

Dr. Edmond Young, Department of Mechanical & Industrial Engineering, University of Toronto

Dr. Milica Radisic, Institute of Biomaterials and Biomedical Engineering, University of

 

For information on invited speakers, registration fees and further details about the program, see the conference website and submit your abstract here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Outstanding Reviewers for Lab on a Chip in 2017

We would like to highlight the Outstanding Reviewers for Lab on a Chip in 2017, as selected by the editorial team, for their significant contribution to the journal. The reviewers have been chosen based on the number, timeliness and quality of the reports completed over the last 12 months.

We would like to say a big thank you to those individuals listed here as well as to all of the reviewers that have supported the journal. Each Outstanding Reviewer will receive a certificate to give recognition for their significant contribution.

Dr David Collins, Singapore University of Technology and Design

Dr  Shoji Takeuchi, University of Tokyo, Japan

Dr Chia Hung Chen, National University of Singapore

Professor Dino Di Carlo, University of California, Los Angeles

Dr Robert Meagher Sandia National Laboratories

Dr  Jian Zhou, University of Illinois at Chicago

Dr Edmond Young, University of Toronto

Professor Amy Herr, University of California, Berkeley

Dr  Adam White, Stanford University

Dr Citsabehsan Devendran, Monash University

We would also like to thank the Lab on a Chip board and community for their continued support of the journal, as authors, reviewers and readers.

If you would like to become a reviewer for our journal, just email us with details of your research interests and an up-to-date CV or résumé.  You can find more details in our author and reviewer resource centre

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Lab on a Chip introduces optional authorship contributions to increase transparency

Lab on a Chip is introducing recommended authorship contributions in all its published articles from February 2018.

Including a description of author contributions increases transparency of who contributed what to the article and ensures that each author is given the appropriate level of credit (and responsibility) for their contribution. Inclusion of author contributions is already common practice in many biomedical/life sciences journals.

Authors are strongly encouraged to include with their submitted manuscript a section with “Author Contributions”, which will be published with the final article. Contributions should be explained concisely. Authors are strongly encouraged to use the CRediT taxonomy to describe those contributions (see terms below). Authors should have agreed to their individual contributions ahead of submission and should accurately reflect contributions to the work. Please note that for any manuscript with more than 10 co-authors, the corresponding author must provide the editor with a statement to specify the contribution of each author.

CRediT (Contributor Role Taxonomy) is a taxonomy tool by CASRAI (Consortia Advancing Standards in Research Administration) and it was developed to increase transparency in contributions by researchers to scholarly publications. More information about CRediT can we found on the CASRAI website.

CRediT terms

Contributor Role Role Definition
Conceptualization Ideas; formulation or evolution of overarching research goals and aims.
Methodology Development or design of methodology; creation of models.
Software Programming, software development; designing computer programs; implementation of the computer code and supporting algorithms; testing of existing code components.
Validation Verification, whether as a part of the activity or separate, of the overall replication/reproducibility of results/experiments and other research outputs.
Formal Analysis Application of statistical, mathematical, computational, or other formal techniques to analyze or synthesize study data.
Investigation Conducting a research and investigation process, specifically performing the experiments, or data/evidence collection.
Resources Provision of study materials, reagents, materials, patients, laboratory samples, animals, instrumentation, computing resources, or other analysis tools.
Data Curation Management activities to annotate (produce metadata), scrub data and maintain research data (including software code, where it is necessary for interpreting the data itself) for initial use and later reuse.
Writing – Original Draft Preparation Creation and/or presentation of the published work, specifically writing the initial draft (including substantive translation).
Writing – Review & Editing Preparation, creation and/or presentation of the published work by those from the original research group, specifically critical review, commentary or revision – including pre- or post-publication stages.
Visualization Preparation, creation and/or presentation of the published work, specifically visualization/data presentation.
Supervision Oversight and leadership responsibility for the research activity planning and execution, including mentorship external to the core team.
Project Administration Management and coordination responsibility for the research activity planning and execution.
Funding Acquisition Acquisition of the financial support for the project leading to this publication.

 

Any questions regarding “Author Contributions” should be directed to the Lab on a Chip Editorial Office.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

“Cutting edge” technology for cell biology in tape-based devices

Sticker-like devices enable quick, rapid prototyping for cell culture experiments

Xurography, or razor-printing, is a low-cost and accessible method for fabricating microfluidic devices. By using a computer controlled razor cutter, sheets of material can be cut precisely to a design. Using adhesive materials, the cut patterns can be used like stickers, and microfluidic devices can then be made by stacking and layering the stickers to create three-dimensional structures. While razor-cut devices might not have the same resolution as soft lithography (150 μm vs. 10-30 μm), their ease of fabrication and rapid turnaround time makes the method very user-friendly and great for rapid prototyping. It is precisely for their ease of use that Jay Warrick (U. Wisconsin) and Maribella Domenech (U. Puerto Rico at Mayagüez) wanted to work with razor-cut microfluidics.

Having access to a very easy fabrication method became a necessity for Domenech. After an electrical fire destroyed her lab and soft lithography equipment in 2016, Domenech was looking for an easy way continue her research while waiting for renovations to be completed. Since she works primarily with undergraduate research students, she needed a fabrication method with a gentle learning curve. “Lithography methods are too difficult to be mastered  within a couple of weeks, but razor-cut devices are easy for anyone to fabricate and use,” says Domenech.

As easy and accessible as any method may be, it won’t gain widespread adoption by a community unless it’s trusted. For biologists, this means trusting that the material is biocompatible and won’t interfere with their experiments. In their recent report, Domenech and Warrick address this challenge and do a service to the community by thoroughly characterizing ARcare 90106, a double-sided adhesive tape for xurography. The tape was compared to polystyrene and PDMS devices, the bread and butter materials of cell biology and microfluidics, respectively. The tape showed good performance across a variety of metrics of cell growth and with a range of cell types. Further, it compared favorably to PDMS in terms of absorption of lipophilic molecules, which means it is less likely to interfere with co-culture experiments where the diffusion of extracellular molecules (e.g., hormones, cytokines, growth factors etc.) is very important.

Easy-made tape-based biocompatible devices open up new opportunities for cell biology. “It’s quite enabling to be able to adhere these devices to so many different types of surfaces,” says Warrick. And because the tape is flexible, it can stick on curved surfaces as well as flat. It also opens up opportunities to integrate new materials with microfluidic devices. Warrick says he’s “often looked at different materials and wished there was an easy way to integrate them. Tape solves this.” In terms of new materials, the team demonstrated the integration of sheets of electrospun collagen within razor-cut microfluidic devices, and co-lead author Yasmín Álvarez-García is currently investigating what other materials could be incorporated. She hopes to expand the current work to include more cell types, perform cell migration studies, and expand the usability of the technique. This will further increase the trustworthiness of the tape’s biocompatibility and lower the barriers for more biologist to get into microfluidics.

To read the full paper for free*, click the link below:

Razor-printed sticker microdevices for cell-based applications

DOI: 10.1039/c7lc00724h (Paper), Lab on a Chip, 2018, 18, 451

__________________

About the Webwriters

Darius Rackus (Right) is a postdoctoral researcher at the University of Toronto working in the Wheeler Lab. His research interests are in combining sensors with digital microfluidics for healthcare applications.

 

*free access until 28th February 2018

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Lego bricks: A quick and cheap way to build microfluidic prototypes

Written for Chemistry World 

Scientists in the US have discovered that Lego bricks can be an effective way of constructing modular microfluidic systems.

Crystal Owens and John Hart from the Massachusetts Institute of Technology used a desktop micromilling machine to drill channels as small as 150μm wide into the Lego bricks. Each brick was designed to perform one or more functions such as mixing, droplet generation, sorting and sensing.

“Making the system modular is a natural choice, because a system can be built piece-by-piece without knowing the final design, and easily changed,” says Owens.

 

Read the full article and watch the video clip in Chemistry World.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Manabu Tokeshi – Our new Associate Editor

We are delighted to announce our new Associate Editor – Manabu Tokeshi!

“I am excited to join the editorial team of Lab on a Chip, my favorite Journal ever since its inception.  I am looking forward to seeing your excellent research in this Journal.”

Manabu Tokeshi is a Professor at the Division of Applied Chemistry at Hokkaido University, Japan and a visiting Professor at the ImPACT Research Center for Advanced Nanobiodevice, Innovative Research Center for Preventive Medical Engineering, and Institute of Innovation for Future Society at Nagoya University.

He received his PhD degree from Kyushu University, Japan. After a research fellowship of the Japan Society of Promotion of Science at The University of Tokyo, he worked at Kanagawa Academy of Science and Technology as a researcher, group subleader and group leader. Before joining Hokkaido University as Professor in 2011, Manabu worked at the Institute of Microchemistry Technology Co. Ltd. as President and at Nagoya University as an Associate Professor.

Professor Tokeshi is a board member of the Chemical & Biological Microsystem Society (CBMS) which oversees the International Conference on Miniaturized Systems for Chemical and Life Sciences (mTAS). He has received various awards for his work, including the Outstanding Researcher Award on Chemistry and Micro-Nano Systems from the Society for Chemistry and Micro-Nano Systems (2007), the Lab on a Chip/Corning Inc Pioneers in Miniaturization Lectureship (2007) and the Masao Horiba Award from HORIBA, Ltd. (2011).

His research interests are in the development of micro- and nano-systems for chemical, biochemical, and clinical applications. You can find out more about Manabu’s research on his homepage.

Manabu will be handling papers from 1st January 2017, so submit your best work to him!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

SLAS 2018

 

SLAS will host SLAS2018, the seventh Annual International SLAS International Conference and Exhibition, in San Diego, California, from Feb. 3-7, 2018.

 

Through a unique combination of education, access to innovative technologies and intelligent peer networking, SLAS2018 delivers unmatched value for professionals and students looking to discover the latest life sciences technologies and how they can be applied to drive research objectives. SLAS 2018 invites research scientists, engineers, academics and business leaders to submit abstracts for presentation.

SLAS is a global community of more than 20,000 life sciences professionals—from academia, government and industry—collectively focused on leveraging the power of technology to achieve scientific objectives. Showcase your research on this global stage by presenting at SLAS2018

 

Key deadlines:

18th December: Early-Bird Registration Discount

Monday, January 22, 2018 (Final Poster Abstract Submission Deadline)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)