Two more hot papers! Free until 22nd August

Controlling the dynamic behavior of heterogeneous self-oscillating gels Controlling the dynamic behavior of heterogeneous self-oscillating gels
Belousov–Zhabotinsky gels convert chemical energy into mechanical oscillations without requiring an external stimulus. This rhythmic behaviour arises from the periodic oxidation and reduction of a ruthenium catalyst bound to the polymer. The chemical oscillations affect the hydration of the metal ion which induces the swelling and deswelling of the gel until the reagents in the host solution are consumed. In this hot paper Anna C. Balazs and co-workers combine experimental and computational studies to investigate the behaviour of heterogeneous Belousov–Zhabotinsky gels in which the Belousov–Zhabotinsky patches can differ in both size and the concentration of the ruthenium ion. The team says that this is the first reported synthesis of heterogeneous Belousov–Zhabotinsky gels.
(J. Mater. Chem., 2012, 22, 13625-13636)

Interfacial engineering of quantum dot-sensitized TiO2 fibrous electrodes for futuristic photoanodes in photovoltaic applications Interfacial engineering of quantum dot-sensitized TiO2 fibrous electrodes for futuristic photoanodes in photovoltaic applications
Fibrous electrodes often suffer from poor adhesion, connectivity or efficiency. In an effort to solve this problem, Yong Soo Kang, Iván Mora-Seró and colleagues report a generic surface treatment approach to improve the electronic interface, and hence the photoanode performance, of quantum dot-sensitized TiO2 fiber electrodes. The team say that their interfacial engineering approach on fibrous membranes could improve the efficiency of photoanodes for range of applications including solar hydrogen generation via water splitting, hybrid (QDs–dye) excitonic solar cells, and light driven photocatalysts.
(J. Mater. Chem., 2012, 22, 14228-14235)

Don’t forget you can see all the recent hot papers here:

To keep up-to-date with all the latest research, sign up for the journal’s e-alerts or RSS feeds or follow Journal of Materials Chemistry on Twitter or Facebook.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)