Archive for December, 2012

Green Solvent for Synthesis: Conference Report 2012

2012 Green Solvents for SynthesisThe latest addition of the “Green Solvents for Synthesis” conference took place in the picturesque Rhein Valley in Boppard, Germany from October 8-10, 2012. This biennial Dechema conference brings together world renowned chemists and engineers from both academia and industry to discuss their recent developments and future insights into the field of alternative solvents, solution phase chemistry, and processes. It is always held in a unique part of Germany, in which previous conferences have been held in the lower Rhein Valley (Bruchsal), Lake Constance (Friedrichshafen) and the Bavarian Alps (Berchtesgaden), and this time in the middle Rhein Valley. The beauty of Boppard and its surrounds (including the Loreley), a UNESCO Heritage site, was an excellent backdrop for the conference and emphasized the importance of sustainable development, an underlying theme of Green Chemistry.

This year’s conference covered various topics in the field of Green Chemistry and showcased the use of green solvents and their increasing implementation, not only in academia but also in industrial applications. Click here to read more…

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Top 10 cited review articles in 2012

A green chemistry coverAs the year draws to a close, here is a list of the top 10 cited review articles in Green Chemistry in 2012 – all free to access until the end of January 2013!

Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited, Joseph J. Bozell and Gene R. Petersen, Green Chem., 2010, 12, 539-554

 Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts, Maria J. Climent, Avelino Corma and Sara Iborra, Green Chem., 2011, 13, 520-540

Catalytic conversion of biomass to biofuels, David Martin Alonso, Jesse Q. Bond and James A. Dumesic, Green Chem., 2010, 12, 1493-1513

Green chemistry by nano-catalysis, Vivek Polshettiwar and Rajender S. Varma, Green Chem., 2010, 12, 743-754

Synthesis of cyclic carbonates from epoxides and CO2, Michael North, Riccardo Pasquale and Carl Young, Green Chem., 2010, 12, 1514-1539

Searching for green solvents, Philip G. Jessop, Green Chem., 2011, 13, 1391-1398

5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications, Andreia A. Rosatella, Svilen P. Simeonov, Raquel F. M. Frade and Carlos A. M. Afonso, Green Chem., 2011, 13, 754-793

Vegetable oil-based polymeric materials: synthesis, properties, and applications, Ying Xia and Richard C. Larock, Green Chem., 2010, 12, 1893-1909

Glycerol as a sustainable solvent for green chemistry, Yanlong Gu and François Jérôme, Green Chem., 2010, 12, 1127-1138

Enzyme-mediated oxidations for the chemist, Frank Hollmann, Isabel W. C. E. Arends, Katja Buehler, Anett Schallmey and Bruno Bühler, Green Chem., 2011, 13, 226-265

Stay up-to-date with the latest news and content in Green Chemistry by registering for our free table of contents alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Green Chemistry issue 1, 2013 – now online!

The first issue of Green Chemistry for 2013 is now available to read online.  Click here to read the Editorial by the Chair of the Editorial Board, Professor Walter Leitner, and Editor, Sarah Ruthven.

The front cover of this month’s issue highlights the work of Bruce Lipshutz and colleagues from the University of California, Santa Barbara, USA.  The team reported the use of a nonionic amphiphile which efficiently enabled Stille couplings in water.  TPGS-750-M is a commercially available ‘designer’ surfactant which self-assembles to form nano-micelles in water.  Within each of these micelles, several coupling reactions can take place.  This procedure, which in most cases could be performed at room temperature, could be applied to a wide variety of substrates and leads to minimal waste generation.

Stille couplings in water at room temperature, Guo-ping Lu, Chun Cai and Bruce H. Lipshutz, Green Chem., 2013, 15, 105-109

The inside front cover features the work by Robert Davis and colleagues from the University of Virginia, USA.  In this Critical Review, the team evaluate the literature surrounding the use of supported metal nanoparticle catalysts for the selective oxidation of alcohols and aldehydes.  They compare the performances of the catalysts studied in this review by categorising reaction rates based on the turnover frequency as a common, consistent denominator.   The authors also look at factors that can affect the evaluation of reaction kinetics, such as catalyst deactivation, and give suggestions regarding how to obtain the best data.

Selective oxidation of alcohols and aldehydes over supported metal nanoparticles, Sara E. Davis, Matthew S. Ide and Robert J. Davis, Green Chem., 2012, 15, 17-45.

Read both of these article for free!

Stay up-to-date with the latest news and content in Green Chemistry by registering for our free table of contents alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Green Chemistry 15 years on…

In January 1999 the first issue of Green Chemistry was published with an Editorial written by James Clark, setting out his vision for the Journal.

GC 1999 Issue 1 Cover jpg

1999: First cover of Green Chemistry

Green Chemistry, 2013, Vol. 15, issue 1 front cover

GC, Vol. 15, issue 1 front cover

To mark the occasion of the Journal entering it’s fifteenth year of publication in 2013 we will be having a number of interesting articles asking those scientists who have contributed to the Journal strategy to reflect on how the subject has changed over the last 15 years and asking them for their vision on the subject in the future. 

We will also be highlighting those papers that have been most cited over the years – the papers that you as readers have been citing the most. 

Details about all of these activities will be posted on the Green Chemistry blog throughout 2013.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Synthesis of antimalarial trioxanes via continuous photo-oxidation

UK scientists have developed a continuous photo-oxidation procedure of an allylic alcohol in supercritical carbon dioxide.

Malaria is one of the most infectious diseases in the world.  Some strains of malaria are becoming resistant to the traditionally used quinine based antimalarials, and so there is a need to develop new antimalarial drugs.  Synthesis of spirobicyclic trioxanesA common feature of some newly developed antimalarial compounds is the trioxane moiety, and a convenient way to introduce this group is via photochemically generated singlet oxygen species (1O2).  However the highlight reactive nature of this species can introduce problems when trying to scale-up the synthesis of these groups for industrial production, particularly in terms of identifying acceptable solvents (non-flammable and in-efficient 1O2 quenchers).

In this work, Martyn Poliakoff, Michael George and colleagues from the University of Nottingham, UK, have developed a continuous process for the sustainable synthesis of trioxones with  1O2in supercritical CO2.  The team also examined the remaining two steps in the synthesis of antimalarial trioxanes from readily available starting materials, and hope that this approach could lead to the exploration of libraries of different trioxanes as potential antimalarial agents.

Read the full article for free until the 9th January 2013!

Synthesis of antimalarial trioxanes via continuous photo-oxidation with 1O2 in supercritical CO2, Jessica F. B. Hall, Richard A. Bourne, Xue Han, James H. Earley, Martyn Poliakoff and Michael W. George, Green Chem., 2013, DOI: 10.1039/C2GC36711D

You may also be interested in this article which is also free to access for a limited time:

Could the energy cost of using supercritical fluids be mitigated by using CO2 from carbon capture and storage (CCS)? James G. Stevens, Pilar Gómez, Richard A. Bourne, Trevor C. Drage, Michael W. George and Martyn Poliakoff, Green Chem., 2011, 13, 2727-2733

Stay up-to-date with the latest news and content in Green Chemistry by registering for our free table of contents alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Stopping endocrine disruptors in their tracks

The endocrine system

The endocrine system

US scientists have come up with a system to assess whether chemists’ latest synthetic product is an endocrine disruptor – a chemical that interferes with hormone regulation in animals and humans.

As industry seeks replacements for endocrine disrupting chemicals (EDCs), such as bisphenol A and some flame retardants, it often discovers that the replacements are no better, and sometimes worse, than what is being replaced. This is because the replacements have been designed using the same flawed tools as their parent chemicals and because of the lack of adequate EDC testing, say the scientists. Now, a team led by Pete Myers, chief executive and chief scientist at Environmental Health Sciences, Virginia, has come up with a way to address this using a system they call TiPED (tiered protocol for endocrine disruption).

Read the full article in Chemistry World!

Tweet: RT @ChemistryWorld Stopping endocrine disruptors in their tracks http://rsc.li/TUxb2q 

Link to journal article
Designing endocrine disruption out of the next generation of chemicals
T. T. Schug,  R. Abagyan, B. Blumberg, T. J. Collins, D. Crews, P. L. DeFur, S. M. Dickerson, T. M. Edwards, A. C. Gore, L. J. Guillette, T. Hayes, J. J. Heindel, A. Moores, H. B. Patisaul, T. L. Tal, K. A. Thayer, L. N. Vandenberg, J. C. Warner, C. S. Watson, F. S. vom Saal, R. T. Zoeller, K. P. O’Brien and J. P. Myers
Green Chem., 2013, Advance Article
DOI: 10.1039/C2GC35055F

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)