Author Archive

Emerging Investigator Series: Adam Smith

Dr. Adam L. Smith is an Assistant Professor in the Astani Department of Civil and Environmental Engineering at the University of Southern California. He received his M.S.E. and Ph.D. from the University of Michigan in Environmental Engineering in 2011 and 2014, respectively. He received his B.S. in Civil Engineering from Marquette University in 2009. The Smith Research Group develops biotechnologies for resource recovery from waste streams.

Read Adam’s Emerging Investigator article “revisiting greenhouse gas mitigation from conventional activated sludge and anaerobic-based wastewater treatment systems and find out more about him in the interview below:

Your recent Emerging Investigator Series paper focuses on greenhouse gas mitigation from conventional activated sludge and anaerobic-based wastewater treatment systems. How has your research evolved from your first article to this most recent article?

My first research endeavours focused on anaerobic membrane bioreactor development for domestic wastewater treatment at psychrophilic temperatures. Although that biotechnology still serves as the basis for many of my ongoing research projects, I have expanded my research portfolio by going deeper into understanding microbial ecology of anaerobic systems, infusing materials science principles to fabricate novel membranes, investigating bioelectrochemical systems compatible with mainstream anaerobic treatment, and exploring more contemporary issues such as greenhouse gas emissions and antibiotic resistance. I have also expanded from focusing exclusively on domestic wastewater to also investigating higher-strength waste streams (e.g., food waste, animal manure, and wastewater sludges).

What aspect of your work are you most excited about at the moment?

I am most excited about our ongoing work investigating antibiotic resistance in mainstream anaerobic treatment systems. My collaborator Dr. Lauren Stadler at Rice University and I are characterizing resistance profiles during anaerobic membrane bioreactor treatment of domestic wastewater to evaluate correlations between influent antibiotic concentrations, understand dynamics of horizontal gene transfer, and establish operational protocols that limit resistance in effluents intended for reuse applications.

In your opinion, what are the most important questions to be asked/answered in this field of research?

Mainstream anaerobic treatment is an exciting research area that could drastically change how we manage wastewater. However, we still need to develop new energy-efficient membrane fouling control strategies and technologies that recover effluent dissolved methane. We also need a better mechanistic understanding of trace contaminant fate in these systems. Significant advancements in these areas are needed before anaerobic membrane bioreactors are ready for full-scale implementation.

What do you find most challenging about your research?

Doing truly transformative research is always a challenge, and I know most of us cringe when we hear that word! It is all too easy to fall into a rhythm of incremental research that winds up as noise in our crowded field.

In which upcoming conferences or events may our readers meet you?

I will be attending the North American Membrane Society Conference, AEESP Conference, and IWA Anaerobic Digestion Conference this coming summer.

How do you spend your spare time?

I enjoy travelling, hiking, skiing, and playing with my munchkin cat Sprinkles Bodinkles.

Which profession would you choose if you were not a scientist?

Astronaut! I went to Space Camp as a child and have been obsessed ever since. Maybe I will submit an application next time NASA is accepting them!

Can you share one piece of career-related advice or wisdom with other early career scientists?

Develop a diverse research portfolio that excites you. Do not be afraid to journey into new disciplines that are outside of your wheelhouse.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New Associate editor: Krista Wigginton

We are excited to announce that Dr Krista Wigginton has joined the Environmental Science: Water Research & Technology Editorial Board as Associate Editor.

Dr Wigginton joins Graham Gagnon, Xia Huang, Stuart Khan, Paige Novak, and Mike Templeton as Associate Editors handling the peer review of submissions to the journal.

Krista received her M.S. and Ph.D. in Environmental Engineering at Virginia Tech and her B.S. in Chemistry at the University of Idaho and conducted postdoctoral research at École Polytechnique Fédérale de Lausanne in Lausanne, Switzerland. In 2013, she joined the faculty in the Department of Civil and Environmental Engineering at the University of Michigan as an assistant professor of environmental engineering. Dr. Wigginton’s research team focuses on pollutant fate in water treatment processes, and on improving pathogen and micropollutant detection.  She’s the recipient of the U.S. NSF International Postdoctoral Fellowship and the NSF CAREER award.

We are confident that Krista will make an outstanding contribution to ESWRT in her new role as Associate Editor and we look forward to working with her further to continue the success of the journal.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Yujie Men

We are delighted to introduce our latest Emerging Investigator, Yujie Men! 

Dr. Yujie Men joined the Department of Civil and Environmental Engineering as an Assistant Professor in March 2016. Before that, she worked as a postdoctoral researcher in the Engineering Research Center for Re-inventing the Nation’s Urban Water Infrastructure at University of California, Berkeley, and a postdoctoral scientist at Swiss Federal Institute of Aquatic Science and Technology. She holds a B.S. and M.S. in Environmental Engineering from Tsinghua University, and earned her Ph.D. in Civil and Environmental Engineering at University of California at Berkeley. Her research focuses on the development of sustainable biotechnologies for cleaner water and a safer and more sustainable environment, by advancing the fundamental knowledge of microbial metabolic diversities and microbe-microbe interactions in built and natural environments. She is a member of the International Society for Microbial Ecology, the American Society for Microbiology, the American Chemical Society and the Association of Environmental Engineering and Science Professors.

Read Yujie’s Emerging Investigators article “Occurrence and fate of emerging organic contaminants in wastewater treatment plants with an enhanced nitrification step,” and find out more about her in the interview below:

Your recent Emerging Investigator Series paper focuses on occurrence and fate of emerging organic contaminants in wastewater treatment plants. How has your research evolved from your first article to this most recent article?

My first article is on bioremediation of chloroethenes, which are traditional organic contaminants in subsurface areas. This Emerging Investigator Series paper focuses on emerging organic contaminants in wastewater: their occurrence and transformation (mostly biological). No matter how the target pollutants change, from canonical to emerging ones and from anaerobic/anoxic subsurface environments to aerobic surface environments, my research goal remains the same: to obtain fundamental understanding of environmental microbial communities (physiological, molecular and ecological properties) and to apply to environmental biotechnologies solving real problems.

What aspect of your work are you most excited about at the moment?

I am most excited about my work on understanding interactions between environmental pollutants and the microbial communities they are exposed to. This includes how microbes transform/degrade the anthropogenic compounds and how the exposure to xenobiotic chemicals affect the metabolism of microorganisms.

In your opinion, what impact do you think this research will have on the development of wastewater treatment plants?

This research reveals important but limited roles of biological wastewater treatment steps (secondary treatment and the enhanced nitrification step) regarding the removal of emerging organic contaminants. Compounds recalcitrant to biotransformation were identified. Formation of incomplete transformation products and product-to-parent transformation were also observed. These findings suggest that advanced treatment of the residuals of emerging organic contaminants after biological treatment is needed in wastewater treatment plants for water reuse purposes, which require a significant reduction of dissolved organic carbon in the effluent.

What do you find most challenging about your research?

It is more and more challenging to find one single approach efficient enough to treat some emerging organic contaminants due to their persistence. A treatment train system combining physical, chemical and biological approaches would be needed to achieve effective separation and treatment.

In which upcoming conferences or events may our readers meet you?

I plan to attend ACS, ASM general meetings, and Gordon Research Conference in Applied and Environment Microbiology in 2019.

How do you spend your spare time?

I enjoy staying with my family and playing with my little one after work. If I still have extra time, I would go for Zumba and swimming. I hope I can go hiking with my family in a year or two when my little one grows bigger.

Which profession would you choose if you were not a scientist?

I would like to become a surgeon.

Can you share one piece of career-related advice or wisdom with other early career scientists?

A successful career is one you are fascinated about, one that makes you eager to learn more and persistent when facing hurdles, one that gives you a feeling of accomplishment and confidence, and one that never has a shortcut to reach.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

IAHR-APD 2018

The  21st Congress of Asia and Pacific Division of International Association for Hydro-Environment Engineering and Research (IAHR-APD) will be held in Yogyakarta, Indonesia, on 2nd – 5th September 2018.

Image result for iahr apd indonesia

For full details on keynote speakers, conference fees, the full congress agenda and how to register, see the conference website for details.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Daisuke Minakata

We are delighted to introduce our latest Emerging Investigator, Daisuke Minakata!

Dr. Daisuke Minakata earned his Ph.D. in environmental engineering from Georgia Tech in 2010. He worked as a research engineer at the Brook Byers Institute for Sustainable System at Georgia Tech for 3 and half years.  Then he became an Assistant Professor at the Department of Civil and Environmental Engineering at Michigan Technological University in 2013. Dr. Minakata’s research interests include development of computational tools to predict the fate of various organic compounds in water and wastewater treatment technologies, including advanced oxidation and reverse osmosis membrane processes and engineered systems including in water distribution systems. Dr. Minakata also studies the nexus of food-energy-water to understand the interventions of sustainable technologies at household levels.

Read his Emerging Investigator article: “Ultraviolet and free chlorine aqueous-phase advanced oxidation process: kinetic simulations and experimental validation and find out more about him in the interview below:

Your recent Emerging Investigator Series paper focuses on ultraviolet and free chlorine aqueous-phase advanced oxidation process. How has your research evolved from your first article to this most recent article?

Predicting the fate of an organic compound and the degradation products in the aqueous-phase advanced oxidation process requires three components: (1) reaction pathways; (2) reaction rate constants; and (3) solving the ordinary differential equations of all species involved in the degradation. We previously developed linear free energy relationships to predict the chlorine radical reaction rate constants for various organic compounds. This study identified elementary reaction pathways of acetone degradation in UV/free chlorine advanced oxidation process using the quantum mechanical calculations and predicted the fate of the degradation products using the previously developed linear free energy relationships.  Our predicted fate was compared to the experiments we conducted and we validated our elementary reaction-based kinetic model. 

What aspect of your work are you most excited about at the moment?

Couple ab initio and density functional theory quantum mechanical calculations with experimental measurements to predict the mechanistic fate of an organic compound and the degradation products in the aqueous phase advanced oxidation processes. With this approach, we can provide mechanistic insight into the degradation mechanisms and a comprehensive picture of radical-induced fate of organic compounds in complex aqueous phase advanced oxidation processes.

In your opinion, why is it important to understand the reaction mechanisms behind advanced oxidation processes and how does the model you have developed aid our understanding?

Understanding the elementary reaction mechanisms provides the most fundamental reaction pathways and kinetics and this information can be applied for many other products. It is not practical to study the degradation products of hundreds of organic compounds experimentally but understanding the most fundamental elementary reaction pathways and kinetics advances our ability to predict the fate of organic compounds in more comprehensive manners. 

What do you find most challenging about your research?

We have demonstrated our capability of predicting the fundamental elementary reaction pathways and kinetics for structurally simple organic compounds using ab initio and density functional theory quantum mechanical approaches. However, challenges remain in applying this approach for structurally more complex organic compounds because of numerous possible reaction pathways and difficulties in validating the predicted pathways and kinetics with the experiments. Also, predicting the fate of structurally diverse organic compounds requires a high throughput screening tool that will be developed based on the fundamental knowledge about the reaction pathways and kinetics discovered by both experiments and computational calculations. Combining the knowledge about the fate of organic compounds with toxicity to develop a comprehensive tool to predict the toxicity of degradation products is the ultimate challenge in this field.

In which upcoming conferences or events may our readers meet you?

ACS National Meeting in Boston, Division of Environmental Chemistry, Advanced Oxidation Process (AOP) session in August, 2018. I co-organize an AOP session with colleagues every year.

How do you spend your spare time?

I walk with our dog in nature.  

Which profession would you choose if you were not a scientist?

I would run a bookstore/coffee shop, collecting a lot of history books and providing good quality of coffee.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Keep your mainstream research with you and focus on longer-term research goals.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Manish Kumar

We are delighted to introduce out latest Envrionmental Science: Water Research & Technology Emerging Investigator, Manish Kumar! 

Manish Kumar is an associate professor of Chemical Engineering, Environmental Engineering, and Biomedical Engineering at Penn State University. He received his bachelors degree from the National Institute of Technology in Trichy, India in Chemical Engineering. He completed an MS in Environmental Engineering at the University of Illinois, and then worked for approximately seven years in the consulting industry on applied research projects (lab, pilot, and full scale) on various technologies for water and wastewater treatment. Manish returned to Illinois to complete a PhD in the area of biomimetic membranes and then conducted postdoctoral research at the Harvard Medical School on the structure of water channel proteins, aquaporins, using cryo-electron microscopy. His current work focuses on adapting molecular scale ideas from biology and materials science for use in sustainable water and wastewater treatment. He has received the US National Science Foundation CAREER award and the Della and Rustom Roy award for outstanding materials research. His independent academic career has resulted in approximately 50 publications so far.

Read Manish’s Emerging Investigators article ‘Prospects and challenges for high-pressure reverse osmosis in minimizing concentrated waste streams’ and find out more about him in the interview below:

Your recent Emerging Investigator Series paper focuses on high-pressure reverse osmosis. How has your research evolved from your first article to this most recent article?

My first paper was on pre-treatment strategies for seawater reverse osmosis utilizing a combination of bench scale and pilot scale studies back when I worked in industry. I have since worked on various aspects of reverse osmosis membrane fouling and new materials development using biomimetic strategies. The current paper has evolved out of our interest in treating high salinity brines, something that I also worked on during my industrial career and have not really focused on much since.

What aspect of your work are you most excited about at the moment?

I am most excited about developing channel-based alternatives (both based on artificial and biological channels) to current reverse osmosis and nanofiltration membranes.

In your opinion, what is the biggest advantage of using reverse osmosis for concentrated waste streams over traditional methods?

The biggest advantage is perhaps the high energy efficiency followed by the ease of implementation for reverse osmosis compared to current thermal processes.  Even though thermal processes in some form may be required to achieve zero liquid discharge but, hopefully, by combining high pressure reverse osmosis with these traditional methods the overall energy efficiency can be greatly improved

What do you find most challenging about your research?

The multidisciplinary aspect of it and the constant feeling that there is so much more to learn – this is perhaps also the most exciting part of it.

In which upcoming conferences or events may our readers meet you?

I am chairing the Gordon Research Conference on Membranes this year (New London, NH, USA 12th to 17thAugust, 2018) and am the deputy chair for a Faraday Discussions meeting on Artificial Water Channels (Glasgow, UK, 25th -27th June, 2018). I will also be attending the American Institute of Chemical Engineers meeting in Pittsburgh in November. My favorite conference to attend is the AEESP conference, which is organized every two years. I am looking forward to the AEESP conference in Phoenix in 2019.

How do you spend your spare time?

I enjoy spending my spare time with my family. We enjoy exercising, traveling, and reading as a family.

Which profession would you choose if you were not a scientist?

I would have loved to be a writer (even though I struggle with writing papers on a day to day basis).

Can you share one piece of career-related advice or wisdom with other early career scientists?

I would recommend collaborating strategically with people from different fields and developing your own unique “research brand”.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Jingyun Fang

We are delighted to introduce out latest Envrionmental Science: Water Research & Technology Emerging Investigator Jingyun Fang! 

Jingyun Fang is now an associate professor at the School of Environmental Science and Engineering at Sun Yat-sen University. She received B.S., M.S. and Ph.D. in Municipal Engineering from Harbin Institute University. She was a postdoctoral fellow, working with Prof. Chii Shang at the Hong Kong University of Science and Technology from 2010 to 2012. Her research focuses on advanced oxidation processes in water treatment: kinetics and mechanisms of degradation of micropollutants and formation of disinfection by-products.

Read Jingyun’s Emerging Investigators article ‘Comparative study of naproxen degradation by the UV/chlorine and UV/H2O2 advanced oxidation processes’ and find out more about her in the interview below:

Your recent Emerging Investigator Series paper focuses on naproxen degradation by UV/chlorine and UV/H2O2 advanced oxidation processes. How has your research evolved from your first article to this most recent article? 

My first research article was on the formation of disinfection byproducts from algae containing water during my PhD study. My current paper is on the control of emerging contaminants by advanced oxidation processes. So, over the years, the focus of my research has shifted from disinfection byproducts to advanced oxidation processes in water treatment. I am fascinated by the performance of some free radicals in water treatment, particularly for some newly identified radicals such as halogen radicals, sulfate radicals and carbonate radicals.

What aspect of your work are you most excited about at the moment? 

I am most excited about exploring new radicals formed in engineering and natural aquatic systems with the ultimate goal of discovering their potential in promoting water sustainability.

In your opinion, which of the two advanced oxidation processes studied was the most effective at degrading naproxen? 

For kinetics, the UV/chlorine process is much more effective at degrading naproxen than the UV/H2O2 process, due to the good reactivity of naproxen with reactive chlorine species (RCS) produced in UV/chlorine. RCS are more selective than hydroxyl radicals (HO•), thus the efficiency UV/chlorine process to the degradation of different pollutants are compound specific. Meanwhile, the formation of toxic halogenated byproducts and toxicity alternation induced by RCS during UV/chlorine should be further assessed.

What do you find most challenging about your research? 

The most challenging aspect of my research is the combination of laboratory experiments and computer-based modeling to identify the roles of primary and secondary radicals in different advanced oxidation processes, as the databases for the reactivity of some newly identified radicals with emerging contaminants or water matrix components are not available.

In which upcoming conferences or events may our readers meet you? 

I will be at the upcoming American Chemical Society National Meeting held in Boston, MA on August 17-18, 2018. Also, I usually attend IWA events.

How do you spend your spare time?

I enjoy spending time with my spouse and our one-year-old boy and twin girls. If there is still time, I enjoy reading, playing yoga and walking.

Which profession would you choose if you were not a scientist? 

If I am not a scientist, I think I might enjoy being a chef. I love cooking and sharing food with friends. Nevertheless, being a scientist is much better as there are a lot of unknowns and it is fun.

Can you share one piece of career-related advice or wisdom with other early career scientists? 

Being able to enjoy the research that you are doing, working hard and being persistent will eventually bring you what you dream.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

5th IAHR Europe Congress

The 5th IAHR Europe Congress will take place in Trento, Italy from 12th-14th June. 

Image result for 5th IAHR Europe Congress

The 5th IAHR Europe Congress aims to provide a forum where scientists, especially early career researchers, can present their work and discuss their ideas with experts in all fields of hydraulics.

For more information on registration, see the conference registration page and for further details including the full agenda, please visit the main conference website

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Outstanding Reviewers for Environmental Science: Water Research & Technology in 2017

We would like to highlight the Outstanding Reviewers for Environmental Science: Water Research & Technology in 2017, as selected by the editorial team, for their significant contribution to the journal. The reviewers have been chosen based on the number, timeliness and quality of the reports completed over the last 12 months.

We would like to say a big thank you to those individuals listed here as well as to all of the reviewers that have supported the journal. Each Outstanding Reviewer will receive a certificate to give recognition for their significant contribution.

Professor Yunho Lee, Gwangju Institute of Science and Technology

Dr Zhen He, Virginia Polytechnic Institute and State University

Dr Timothy Julian, Eawag

Professor Long Nghiem, University of Wollongong

Professor Debora Rodrigues, University of Houston

Dr Neal Chung Tai-Shung, National University of Singapore

Dr Qian Zhang, University of Minnesota

Dr David Bagley, University of Wyoming

Dr Barbara Ward, Eawag

Dr Kristine Wammer, Saint Thomas University

Dr Meagan Mauter, Carnegie Mellon University

We would also like to thank the Environmental Science: Water Research & Technology board and the sustainable water community for their continued support of the journal, as authors, reviewers and readers.

If you would like to become a reviewer for our journal, just email us with details of your research interests and an up-to-date CV or résumé.  You can find more details in our author and reviewer resource centre

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

2018 Pacific Northwest WateReuse Conference

The 2018 Pacific Northwest WateReuse Conference will take place at the Sheraton Portland Airport Hotel in Portland, Oregon from May 17-18, 2018. 

 

This event welcomes individuals, organizations, and agencies with an interest in the design, management, operation, and use of water recycling facilities and projects in the Pacific Northwest and beyond. Presentations will focus on specific projects and topics for all phases of development including feasibility, planning, design, operations, public outreach, funding and regulatory updates.

Advance registration ends May 10, 2018.

To register and for more information, visit the website here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)