Author Archive

Emerging Investigator Series – Manish Kumar

We are delighted to introduce out latest Envrionmental Science: Water Research & Technology Emerging Investigator, Manish Kumar! 

Manish Kumar is an associate professor of Chemical Engineering, Environmental Engineering, and Biomedical Engineering at Penn State University. He received his bachelors degree from the National Institute of Technology in Trichy, India in Chemical Engineering. He completed an MS in Environmental Engineering at the University of Illinois, and then worked for approximately seven years in the consulting industry on applied research projects (lab, pilot, and full scale) on various technologies for water and wastewater treatment. Manish returned to Illinois to complete a PhD in the area of biomimetic membranes and then conducted postdoctoral research at the Harvard Medical School on the structure of water channel proteins, aquaporins, using cryo-electron microscopy. His current work focuses on adapting molecular scale ideas from biology and materials science for use in sustainable water and wastewater treatment. He has received the US National Science Foundation CAREER award and the Della and Rustom Roy award for outstanding materials research. His independent academic career has resulted in approximately 50 publications so far.

Read Manish’s Emerging Investigators article ‘Prospects and challenges for high-pressure reverse osmosis in minimizing concentrated waste streams’ and find out more about him in the interview below:

Your recent Emerging Investigator Series paper focuses on high-pressure reverse osmosis. How has your research evolved from your first article to this most recent article?

My first paper was on pre-treatment strategies for seawater reverse osmosis utilizing a combination of bench scale and pilot scale studies back when I worked in industry. I have since worked on various aspects of reverse osmosis membrane fouling and new materials development using biomimetic strategies. The current paper has evolved out of our interest in treating high salinity brines, something that I also worked on during my industrial career and have not really focused on much since.

What aspect of your work are you most excited about at the moment?

I am most excited about developing channel-based alternatives (both based on artificial and biological channels) to current reverse osmosis and nanofiltration membranes.

In your opinion, what is the biggest advantage of using reverse osmosis for concentrated waste streams over traditional methods?

The biggest advantage is perhaps the high energy efficiency followed by the ease of implementation for reverse osmosis compared to current thermal processes.  Even though thermal processes in some form may be required to achieve zero liquid discharge but, hopefully, by combining high pressure reverse osmosis with these traditional methods the overall energy efficiency can be greatly improved

What do you find most challenging about your research?

The multidisciplinary aspect of it and the constant feeling that there is so much more to learn – this is perhaps also the most exciting part of it.

In which upcoming conferences or events may our readers meet you?

I am chairing the Gordon Research Conference on Membranes this year (New London, NH, USA 12th to 17thAugust, 2018) and am the deputy chair for a Faraday Discussions meeting on Artificial Water Channels (Glasgow, UK, 25th -27th June, 2018). I will also be attending the American Institute of Chemical Engineers meeting in Pittsburgh in November. My favorite conference to attend is the AEESP conference, which is organized every two years. I am looking forward to the AEESP conference in Phoenix in 2019.

How do you spend your spare time?

I enjoy spending my spare time with my family. We enjoy exercising, traveling, and reading as a family.

Which profession would you choose if you were not a scientist?

I would have loved to be a writer (even though I struggle with writing papers on a day to day basis).

Can you share one piece of career-related advice or wisdom with other early career scientists?

I would recommend collaborating strategically with people from different fields and developing your own unique “research brand”.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series – Jingyun Fang

We are delighted to introduce out latest Envrionmental Science: Water Research & Technology Emerging Investigator Jingyun Fang! 

Jingyun Fang is now an associate professor at the School of Environmental Science and Engineering at Sun Yat-sen University. She received B.S., M.S. and Ph.D. in Municipal Engineering from Harbin Institute University. She was a postdoctoral fellow, working with Prof. Chii Shang at the Hong Kong University of Science and Technology from 2010 to 2012. Her research focuses on advanced oxidation processes in water treatment: kinetics and mechanisms of degradation of micropollutants and formation of disinfection by-products.

Read Jingyun’s Emerging Investigators article ‘Comparative study of naproxen degradation by the UV/chlorine and UV/H2O2 advanced oxidation processes’ and find out more about her in the interview below:

Your recent Emerging Investigator Series paper focuses on naproxen degradation by UV/chlorine and UV/H2O2 advanced oxidation processes. How has your research evolved from your first article to this most recent article? 

My first research article was on the formation of disinfection byproducts from algae containing water during my PhD study. My current paper is on the control of emerging contaminants by advanced oxidation processes. So, over the years, the focus of my research has shifted from disinfection byproducts to advanced oxidation processes in water treatment. I am fascinated by the performance of some free radicals in water treatment, particularly for some newly identified radicals such as halogen radicals, sulfate radicals and carbonate radicals.

What aspect of your work are you most excited about at the moment? 

I am most excited about exploring new radicals formed in engineering and natural aquatic systems with the ultimate goal of discovering their potential in promoting water sustainability.

In your opinion, which of the two advanced oxidation processes studied was the most effective at degrading naproxen? 

For kinetics, the UV/chlorine process is much more effective at degrading naproxen than the UV/H2O2 process, due to the good reactivity of naproxen with reactive chlorine species (RCS) produced in UV/chlorine. RCS are more selective than hydroxyl radicals (HO•), thus the efficiency UV/chlorine process to the degradation of different pollutants are compound specific. Meanwhile, the formation of toxic halogenated byproducts and toxicity alternation induced by RCS during UV/chlorine should be further assessed.

What do you find most challenging about your research? 

The most challenging aspect of my research is the combination of laboratory experiments and computer-based modeling to identify the roles of primary and secondary radicals in different advanced oxidation processes, as the databases for the reactivity of some newly identified radicals with emerging contaminants or water matrix components are not available.

In which upcoming conferences or events may our readers meet you? 

I will be at the upcoming American Chemical Society National Meeting held in Boston, MA on August 17-18, 2018. Also, I usually attend IWA events.

How do you spend your spare time?

I enjoy spending time with my spouse and our one-year-old boy and twin girls. If there is still time, I enjoy reading, playing yoga and walking.

Which profession would you choose if you were not a scientist? 

If I am not a scientist, I think I might enjoy being a chef. I love cooking and sharing food with friends. Nevertheless, being a scientist is much better as there are a lot of unknowns and it is fun.

Can you share one piece of career-related advice or wisdom with other early career scientists? 

Being able to enjoy the research that you are doing, working hard and being persistent will eventually bring you what you dream.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

5th IAHR Europe Congress

The 5th IAHR Europe Congress will take place in Trento, Italy from 12th-14th June. 

Image result for 5th IAHR Europe Congress

The 5th IAHR Europe Congress aims to provide a forum where scientists, especially early career researchers, can present their work and discuss their ideas with experts in all fields of hydraulics.

For more information on registration, see the conference registration page and for further details including the full agenda, please visit the main conference website

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Outstanding Reviewers for Environmental Science: Water Research & Technology in 2017

We would like to highlight the Outstanding Reviewers for Environmental Science: Water Research & Technology in 2017, as selected by the editorial team, for their significant contribution to the journal. The reviewers have been chosen based on the number, timeliness and quality of the reports completed over the last 12 months.

We would like to say a big thank you to those individuals listed here as well as to all of the reviewers that have supported the journal. Each Outstanding Reviewer will receive a certificate to give recognition for their significant contribution.

Professor Yunho Lee, Gwangju Institute of Science and Technology

Dr Zhen He, Virginia Polytechnic Institute and State University

Dr Timothy Julian, Eawag

Professor Long Nghiem, University of Wollongong

Professor Debora Rodrigues, University of Houston

Dr Neal Chung Tai-Shung, National University of Singapore

Dr Qian Zhang, University of Minnesota

Dr David Bagley, University of Wyoming

Dr Barbara Ward, Eawag

Dr Kristine Wammer, Saint Thomas University

Dr Meagan Mauter, Carnegie Mellon University

We would also like to thank the Environmental Science: Water Research & Technology board and the sustainable water community for their continued support of the journal, as authors, reviewers and readers.

If you would like to become a reviewer for our journal, just email us with details of your research interests and an up-to-date CV or résumé.  You can find more details in our author and reviewer resource centre

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

2018 Pacific Northwest WateReuse Conference

The 2018 Pacific Northwest WateReuse Conference will take place at the Sheraton Portland Airport Hotel in Portland, Oregon from May 17-18, 2018. 

 

This event welcomes individuals, organizations, and agencies with an interest in the design, management, operation, and use of water recycling facilities and projects in the Pacific Northwest and beyond. Presentations will focus on specific projects and topics for all phases of development including feasibility, planning, design, operations, public outreach, funding and regulatory updates.

Advance registration ends May 10, 2018.

To register and for more information, visit the website here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigators Series – Takahiro Fujioka

 

Takahiro Fujioka received his B.Eng. in 2000 and M.Eng. in 2002 both in Chemical Engineering from Hiroshima University, Japan. He worked as a project manager at Fuji Electric Systems Co. Ltd. from 2002 to 2005. He undertook postgraduate training in Water Supply Engineering at UNESCO-IHE, Netherlands and graduated in April 2009. Thereafter, he worked as a project engineer at Mitsubishi Electric Co. until December 2010. From December 2010 to December 2013, Takahiro undertook a Ph.D. training project at the University of Wollongong, Australia. From December 2013 to April 2015, Takahiro worked as a research fellow at the University of Wollongong. In addition, he served as the secretary and a board member of the Membrane Society of Australasia from May 2013 to May 2015.

Takahiro is currently an Associate Professor at Nagasaki University. His research interests centre on water reuse using membrane technologies. He has published 34 international journal papers.

Read Takahiro’s Emerging Investigators paper “A steric pore-flow model to predict the transport of small and uncharged solutes through a reverse osmosis membrane” and find out more about him in the interview below:

 

(more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigators Series – John D. Sivey

John D. Sivey is an Assistant Professor of Chemistry at Towson University, where he is also a Fisher Endowed Chair in the Biological and Physical Sciences. Sivey’s research group investigates the chemistry and consequences of highly electrophilic halogenating agents in disinfected waters. His team also examines the transformation mechanisms and fate of “inert” constituents of agrochemical formulations. Sivey teaches courses in analytical and environmental chemistry, as well as an Honors College course entitled The Polluted States of America. 

Sivey received his PhD in Environmental Engineering and Chemistry from Johns Hopkins University, his MS in Environmental Engineering and Science from Clemson University, and his BS in Chemistry from Central Michigan University. Prior to joining the faculty of the Department of Chemistry at Towson University, Sivey completed postdoctoral work in the Department of Chemical and Environmental Engineering at Yale University.

Read John’s Emerging Investigators paper “Comparing the inherent reactivity of often-overlooked aqueous chlorinating and brominating agents toward salicylic acid” and find out more about him in the interview below:

 

Your recent Emerging Investigator Series paper focuses on the reactivity of chlorinating and brominating agents towards salicylic acid. How has your research evolved from your first article to this most recent article?

As an undergraduate student, I performed research in the area of physical organic chemistry, at which time I first became interested in chemical kinetics. While completing my MS thesis, I examined the long-term fate of polychlorinated biphenyls at the sediment-water interface of a lake in South Carolina, USA. Most of my PhD research focused on the kinetics of chlorination and bromination, particularly with respect to organic compounds in disinfected waters. While completing my PhD dissertation, it became clear that traditional models used to describe the behaviour of aqueous chlorine and bromine could not fully explain reactivity patterns associated with several types of organic compounds. Such traditional models typically assume HOCl and HOBr are the only kinetically-relevant chlorinating and brominating agents in waters treated with free chlorine. We discovered, however, that despite their typically low concentrations, several additional halogenating agents (such as BrCl, BrOCl, Cl2O, and others) can influence overall halogenation rates, especially for organic compounds with moderate reactivity toward aqueous chlorine and bromine. As my group’s paper about salicylic acid illustrates, I am still interested in fleshing out the solution conditions and organic compound classes that are most susceptible to halogenation by these less abundant (but highly electrophilic) halogenating agents.

What aspect of your work are you most excited about at the moment?

Most of my group’s halogenation research has (until recently) been performed in synthetic waters with carefully-controlled compositions. New experiments in my laboratory are delineating the contributions of species such as BrCl, BrOCl, et al., in natural waters following disinfection. Such experiments will help us to bridge the knowledge gap between comparatively clean synthetic waters and the more complex natural systems.

In your opinion, what is the potential impact on drinking water quality presented by halosalicylates?

Halosalicylates can have at least a two-fold impact on drinking water quality. Firstly, halosalicylates can attenuate drinking water quality by contributing to the overall toxicity of these waters, which depends on the specific chemical structures, concentrations, and persistence of the halosalicylates (and other toxicants) present. In addition, halosalicylates can undergo subsequent reactions (e.g., with chlorine or bromine) to form other disinfection byproducts that may be of greater or lesser concern than the halosalicylates themselves.

What do you find most challenging about your research?

Converting chemical kinetic data into mechanistic models is definitely one of the most challenging aspects of my group’s research. In the salicylic acid paper, for example, the possibility of salicyloyl hypochlorite serving as a reactive intermediate never crossed my mind prior to wrestling with the data and having helpful conversations with my colleagues.

In which upcoming conferences or events may our readers meet you?

I will be at the American Chemical Society’s National Conference in New Orleans beginning on March 18, 2018. I also plan to attend the Gordon Research Conference on Water Disinfection, Byproducts and Health beginning on July 28, 2019.

How do you spend your spare time?

I enjoy taking hikes with my two Labrador Retrievers, gardening, watching college sports, and playing arcade pinball (which, as it turns out, is enjoying a bit of a renaissance).

Which profession would you choose if you were not a scientist?

Were it not for environmental chemistry, I would have chosen meteorology. I had a short stint as a meteorology major as an undergraduate before switching to chemistry. If I were forced into a career outside of the sciences, it would be as a basketball referee (which was my side job as an undergraduate). It was once pointed out to me that meteorologists and referees are two jobs where you can routinely be incorrect and yet keep your job.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Look for the teachable moments in successes and in failures. My institution (Towson University) is primarily undergraduate, and I make it a point with my research students to celebrate the experiments that did not give the results we anticipated. I’m quick to remind my students that every new experiment can result in a discovery, even if that discovery is not the outcome the student (or I) had in mind.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)