10th International Conference on Biofilm Reactors

The 10th International Conference on Biofilm Reactors is taking place on 9th-12th May in Dublin, Ireland. The event, which is being jointly organised by University College Dublin and the International Water Association, aims to bring together both practitioners and researchers to disseminate new knowledge and to link practical application with basic sciences. Confirmed speakers include: Kim Sorensen, (WABAG, Switzerland), Rene Rozendal (Paques, The Netherlands), Rob Nerenberg (University of Notre Dame).

Register now to book your place!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Biochar takes the pharmaceuticals out of urine

Written by Jeremy Allen for Chemistry World

Method for cleansing waste urine could see it used as a fertiliser

US researchers have demonstrated that biochar, essentially burnt plants, can remove pharmaceuticals from urine waste streams. The findings could help recycle urine into agricultural fertilisers.

Human urine is rich in nitrogen and phosphorus – just what plants need. However, human urine can also contain pharmaceuticals, the release of which cause worrying developmental effects in aquatic ecosystems, hampering its use as a fertiliser. While some wastewater treatment plants recover nutrients from urine and wastewater, they do not typically remove pharmaceuticals. Current pharmaceutical removal systems involve membranes, electrodialysis and activated carbon, but they can be costly, energy intensive and unsustainable.

Pharmaceutical removal in synthetic human urine using biochar

Source: © Royal Society of Chemistry

Now, Avni Solanki from the University of Florida and Treavor Boyer from Arizona State University, have studied biochar, a precursor to activated carbon, to see if it could work as a viable alternative

 

Read the full article in Chemistry World.


Pharmaceutical removal in synthetic human urine using biochar
Avni Solanki and Treavor H. Boyer
Environ. Sci.: Water Res. Technol., 2017
DOI: 10.1039/C6EW00224B

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Graduate Student Symposium: “Water Sustainability: Chemists in Pursuit of Clean Water”


Graduate students from Georgetown University are pleased to host the Spring 2017 Graduate Student Symposium, “Water Sustainability: Chemists in Pursuit of Clean Water”, at the 253rd ACS National Meeting in San Francisco, CA. The symposium aims to address the global water crisis and discuss how chemists are making an impact on the issues of water sustainability.

Check out the symposium website to get all the latest information at

http://georgetowngsspc.weebly.com/

We look forward to seeing you in lovely San Francisco!


Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Outstanding Reviewers for Environmental Science: Water Research & Technology in 2016

Following the success of Peer Review Week in September 2016 (dedicated to reviewer recognition) during which we published a list of our top reviewers, we are delighted to announce that we will continue to recognise the contribution that our reviewers make to the journal by announcing our Outstanding Reviewers each year.

We would like to highlight the Outstanding Reviewers for Environmental Science: Water Research & Technology in 2016, as selected by the editorial team, for their significant contribution to the journal. The reviewers have been chosen based on the number, timeliness and quality of the reports completed over the last 12 months.

We would like to say a big thank you to those individuals listed here as well as to all of the reviewers that have supported the journal. Each Outstanding Reviewer will receive a certificate to give recognition for their significant contribution.

Dr Kyle Bibby, University of Pittsburgh
Dr Marc Edwards, Virginia Tech
Dr Zhen He, Virginia Tech
Dr Oliver Lefebvre, National University of Singapore
Dr Daniel McCurry, University of Southern California
Dr Long Nghiem, University of Wollongong
Professor Fernando Rosario-Ortiz, University of Colorado Boulder
Dr Michael Templeton, Imperial College
Dr Paul van der Wielen, KWR Watercycle Research Institute
Dr Yifeng Zhang, Technical University of Denmark

We would also like to thank the Environmental Science: Water Research & Technology board and the environmental science community for their continued support of the journal, as authors, reviewers and readers.

 

If you would like to become a reviewer for our journal, just email us with details of your research interests and an up-to-date CV or résumé.  You can find more details in our author and reviewer resource centre.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

9th Eastern European Young Water Professionals Conference

The 9th Eastern European Young Water Professionals Conference is an annual conference organised by the International Water Association (IWA), specifically aimed at people under 35 who work in this area. This year, the conference will take place on 24-27th May 2017  in Budapest, Hungary with a theme of “Cross-Border Cooperation of Old, New and Candidate Countries of EU, for identifying problems, finding causes and solutions”. The conference include poster and oral presentations, as well as workshops a technical tour, and cultural excursions. Visit their website for more details!

Key Date:

Registration Deadline – 1st April

Can’t make the conference, but would like to be engaged with young water professionals? Why not read our Emerging Investigators series in Environmental Science: Water Research & Technology – http://rsc.li/emerging-series

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Membrane Technology Conference and Exposition

The Membrane Technology Conference and Exposition is the annual conference organised jointly by the American Water Works Association (AWWA) and American Membrane Technology Association (AMTA). This year the conference is being held on 13-17th February in Long Beach, California. They aim to explore “the development and implementation of membrane technologies in water, wastewater, reuse, and industrial membrane systems as well as operation and maintenance of membrane equipment and facilities”. As well as technical sessions, the event also offers workshops, networking events and facility tours.

Register now to book your place!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

What are your colleagues reading in Environmental Science: Water Research & Technology?

The articles below are some of the most read Environmental Science: Water Research & Technology articles in 2016. You can view the full collection of our top 10 downloaded articles here.

 

Membrane materials for water purification: design, development, and application
Anna Lee, Jeffrey W. Elam and Seth B. Darling

 

Inorganic engineered nanoparticles in drinking water treatment: a critical review
Konstantinos Simeonidis, Stefanos Mourdikoudis, Efthimia Kaprara, Manassis Mitrakas and Lakshminarayana Polavarapu

 

Survey of green building water systems reveals elevated water age and water quality concerns
William J. Rhoads, Amy Pruden and Marc A. Edwards

 

Characterising and understanding the impact of microbial biofilms and the extracellular polymeric substance (EPS) matrix in drinking water distribution systems
Katherine E. Fish, A. Mark Osborn and Joby Boxall

 

Inactivation of bacteria from contaminated streams in Limpopo, South Africa by silver- or copper-nanoparticle paper filters
Theresa A. Dankovich, Jonathan S. Levine, Natasha Potgieter, Rebecca Dillingham and James A. Smith

 

Keep up-to-date with the latest issues of Environmental Science: Water Research & Technology by joining our e-alerts.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: John-David Rocha and Reginald Rogers

John-David R. Rocha is an Assistant Professor in the School of Chemistry and Materials Science at the Rochester Institute of Technology. His research focus is in the area of nanotechnology as a physical / analytical / materials chemist, more specifically, in the use of nanomaterials in energy, electronics, and environmental science. He utilizes his expertise in the areas of carbon nanomaterials characterization to expand areas of fundamental understanding in carbon nanotubes and graphenes, keenly working to tie the acquired knowledge to the application needs of the chemical and engineering industries. He received his BS and MS degrees in Chemistry from the University of North Texas in 1995 and 2002, respectively. Following his PhD in 2008 from Rice University, he was a Postdoctoral Researcher at the National Renewable Energy Laboratory. Prior to arriving at RIT, Dr. Rocha was a Research Scientist at SouthWest NanoTechnologies Inc. where, among other responsibilities, he led a $1.1M joint collaboration between SWeNT and a major electronics corporation to develop semiconducting SWCNT inks for thin film transistor applications. His doctoral and postdoctoral research focused on optical spectroscopic characterization of carbon-based nanomaterials including carbon nanotubes and metal organic frameworks. Rocha’s chemical research experience also includes work in gas-phase chemical kinetics of atmospheric and combustion chemistry and computational chemistry studies of organometallics. He is a member of the American Chemical Society and also participates regularly in activities with the MRS, AAAS, and the Society for the Advancement of Chicano and Native Americans in Science (SACNAS). Prior to returning to full-time chemical research in 2003, Rocha taught secondary Mathematics and Chemistry in the large urban school district of Dallas, TX, his hometown.

Reginald Rogers is an Assistant Professor in Chemical Engineering at the Rochester Institute of Technology.  He is head of the Nanoscale Energy and Separation Materials Laboratory (NESML).  Dr. Rogers and his group have been involved in a variety of projects investigating the separation of organic and inorganic compounds from aqueous environments using carbon-based nanomaterials.  Dr. Rogers also has projects focused on the development of cathode materials for sodium ion batteries.  He has served as a co-author on over 20 research papers and has presented at many national conferences.  Dr. Rogers recently received several awards, including the 2015 Joseph N. Cannon Award in Chemical Engineering from the National Organization for the Professional Advancement of Black Chemists and Chemical Engineers, and the 2016 Richard and Virginia Eisenhart Provost’s Award for Excellence in Teaching from RIT.

Read their Emerging Investigators article Highly Effective Adsorption of Organic Aromatic Molecules from Aqueous Environments by Electronically Sorted SingleWalled Carbon Nanotubes and find out more about their work in the interview below:

Your recent Emerging Investigator Series paper in Environmental Science: Water Research & Technology focuses on single-walled carbon nanotubes, and the influence of chirality on their performance for water remediation applications. How has your research evolved from your first article to this most recent article?

Reginald: In 2011, we had a premise that carbon nanotubes could be used in water treatment applications, but never had a complete picture on their promise.  The initial results, published in Chemical Engineering Journal, laid the foundation for further expansion on the subject.  In 2013, we reported on a novel technique for using hybrid structures, which significantly improved the adsorption uptake capacity.  With this knowledge, my group published 5 other publications to further develop and clarify the adsorption behavior in batch and fixed bed systems.  This new paper on using sorted carbon nanotubes by chirality provides another stepping stone towards the development of 3-D adsorption architectures for filtration systems.  The hope is to take this knowledge and continue the growth of this fairly new adsorbent in water treatment applications. 

John-David: My work with single-walled carbon nanotubes began back in 2003 with my primary expertise developed in the use of novel optical spectroscopic techniques for characterization. Following the establishment of new spectrofluorimetric analytical methods, I demonstrated the application of the techniques to study chirality specific reactivities to solve important early questions of single-walled carbon nanotube chemistry. Interestingly, these studies illustrated how early cursory studies of carbon nanotubes can be impacted by material variability and control of experimental conditions. It was with these studies between 2003 to 2008, followed by my growth of research experience in SWCNT separations work, that I developed the knowledge to partner with Dr. Rogers in broadening his exciting research in applying carbon nanotubes to water treatment applications.

What aspect of your work are you most excited about at the moment?

Reginald: I am most excited about the opportunity for translating our results from the past research efforts into actual systems (e.g. mocked up water filtration system) to see what an end user would see from an engineered product solution standpoint.  This will calibrate us to other focus areas that may be needed to further enhance this particular type of adsorbent.

John-David: The most exciting aspects of my carbon nanomaterials research at the moment are seeing the growth opportunities in novel, unexplored application areas like environmental science and water remediation.

In your opinion, what is the biggest challenge in using nanotubes as an adsorbent in environmental systems?

Reginald: I would say that biggest challenge in using nanotubes as an adsorbent in environmental systems is being able to demonstrate their reusability on the long-range scale.  One of the biggest debates around nanomaterials is their end of life attributes.  It is my belief that we can overcome the fears of increasing toxicity levels from nanomaterials by continually exploring how to recycle these materials for reuse by the end user. 

John-David: This question dovetails into the next, but essentially the biggest challenge is the intrinsic variability of carbon nanotube materials, both single- and multi-walled. These variations arise from the different large-scale production and processing techniques. Ultimately, determining how the variations can affect results in applications like adsorption of environmental pollutants can sometimes be more difficult relative to the potential advantages gained.

What do you find most challenging about your research?

Reginald: The most challenging thing about my research is focusing on how to drive down the costs associated with material development of these carbon nanotube-based adsorbents.  A major hurdle in the rapid expansion of this type of adsorbent is driven by scale-up.  Given the wide variability in carbon nanotube synthesis and purification techniques, it is not as straightforward as one might expect to simply produce bulk quantities of this type of adsorbent with a small degree in variation from one batch to another.  As my group continues to develop these adsorbents, we are constantly looking for ways to minimize variability in synthesis techniques.

John-David: I would strongly concur with Dr. Rogers in his summary of the challenging aspects with respect to carbon nanomaterials research. More broadly, it is extremely difficult to demonstrate the ability to scale bench-top research results to actual real-world application level results. Quite often the disconnect between published results to the production level end-user application goals is too great to overcome. The challenge is to continually find ways to answer the important questions that can help close or reduce these gaps.

In which upcoming conferences or events may our readers meet you?

Reginald: I will be attending the 2017 Gordon Research Conference on Environmental Nanotechnology in Stowe, VT June 18th-23rd.  I will also be at the 2017 American Institute of Chemical Engineers Annual Meeting in Minneapolis, MN October 29th-November 3rd.

John-David: I will be attending the 254th American Chemical Society National Meeting in Washington, DC August 20 – 24 and the ACS Northeast Regional Meeting in October 2017.

How do you spend your spare time?

Reginald: I am typically spending my time traveling to new locations, reading books, or staying in shape at the gym.

John-David: I enjoy spending time with my family, volunteering in the community, participating in church activities, reading books, and exercising.

Which profession would you choose if you were not a scientist?

Reginald: Since I love to travel, I would say I would choose to be travel agent or food connoisseur.

John-David: I was a high school chemistry teacher for a number of years, so it’s hard to speak of a profession that doesn’t fall within the broad context of the STEM fields. Potential non-chemistry related professions might be medical doctor/surgeon or a computer programmer.

Can you share one piece of career-related advice or wisdom with other early career scientists?

Reginald: Find balance in how your handle your workload.  Don’t go overboard with trying to do everything at one time.  Be willing to say “no” when the going gets tough.  This will help you maintain sanity as you navigate all of your responsibilities.

John-David: Find like-minded colleagues to communicate with regarding all aspects of life, not exclusive to, but in particular those areas outside of research and teaching, including family life, recreation, and social areas. Also don’t sacrifice your personal life, particularly family, for your career.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Joseph Kasprzyk

Joseph Kasprzyk, Assistant Professor of Civil and Architectural Engineering.

Joseph Kasprzyk is an assistant professor in the Civil Environmental and Architectural Engineering Department at the University of Colorado Boulder.  His research focuses on advancing multi-objective decision making and model diagnostics for water resources and environmental engineering problems.  Recent research projects in his group include stakeholder engagement for water resources management in the Front Range of Colorado, creating a framework for improved water quality under extreme climate events, and analysing the air quality and public health impacts of unconventional oil and gas development.  He is the recipient of the Universities Council on Water Resources dissertation award and the Early Career Research Excellence award from the International Environmental Modelling and Software Society.  Kasprzyk earned his PhD from the Pennsylvania State University.

Read Joseph’s Emerging Investigators review of Decision support systems for water treatment: making the case for incorporating climate change and climate extremes and find out more about his work in the interview below:

How has your research evolved from your first to your most recent article?

When I started my research career, my research adviser Prof. Pat Reed and I started a productive collaboration with Prof. Greg Characklis at the University of North Carolina.  Greg had some innovative ideas on risk-based decision making for water resources systems, such as using thresholds and probabilistic modelling to inform utilities on how to make their water supply have a higher reliability (i.e. meeting demands and maintaining supply levels).  In my own research I worked on new methods for multi-objective decision making for these systems.  Later, we would also collaborate with researchers at RAND corporation on how to bring robust decision making techniques to bear on these problems, coupling them with multi-objective optimization.

In my more recent papers, we have worked on a diverse set of problems with these techniques including a multi-reservoir water resources system in Texas and groundwater contamination remediation.  I’ve also worked on a set of projects that seeks to continue advancing the methodology of multi-objective optimization, such as exploring the impact of problem formulation on the solutions generated from optimization (e.g., what is the influence of constraints on the solutions from decision support).  Of course, we are quite excited about the work published in Environmental Science: Water Research and Technology, where we have provided a critical review of how some of the water resources research that we have done can inform and advance the study of source water quality and water treatment.

What aspect of your work are you most excited about at the moment?

There are many reasons to be excited when studying environmental engineering and decision making these days!

There is a growing community working on these problems, as evidenced by a new Society for Decision Making Under Deep Uncertainty, as well as a burgeoning community in Water and Society at the American Geophysical Union.  It is exciting to have more people joining the conversation and bringing in new ideas.

The proliferation of scientific tools, programming languages, and technologies is making it easier to share decision support systems with students, analysts, as well as decision makers and stakeholders themselves.  However, this opportunity also means that we need to keep educating people as to how to properly use scientific and engineering techniques to come to the proper conclusion about their systems.  For example, in the past, it might have been possible to only run a small number of computer simulations to understand the performance of a system, but with high performance computing systems as well as cloud services, the possibilities are now being greatly expanded.

I’m excited to continue pursuing work directly with stakeholders and decision makers, which helps us learn how to improve our tools to have greater applicability, as well as disseminate our scientific findings within the community to guide their activities.  My work in this area has been greatly aided by Western Water Assessment at the University of Colorado Boulder and the Water Research Foundation, an organization that has a great relationship with water utilities around the country.

In your opinion, what is the most concerning impact associated with your work?

Our critical review paper suggests that although scientists are gaining a good understanding of how climate change impacts the quantity of water in our supply systems, the relationship between climate change and water quality is more complex and not as well understood.  The complexity of decision support for water treatment, as well as the wide variety of models and techniques used within the field, is exciting, but potentially overwhelming for stakeholders and users in the field.  So we are happy that we were able to share our findings in the journal so that our review can be a resource for researchers to continue their important work in the future.

What do you find most challenging about your research?

The project team on this paper is an interesting mix of hydrologists, environmental chemists, and water resources engineers.  The terminology used within these fields is not always consistent, but what was even more challenging was that the terminology within the research articles that we reviewed was even less consistent.  This is one of the main reasons why one of the recommendations we made is for a standardization of terminology in order to improve communication in this important field.  The lead author of the paper, William Raseman, did a great job in culling all the information and I hope it came through in the final manuscript.

In which upcoming conferences or events may our readers meet you?

My group typically attends the American Geophysical Union fall meeting (in December of every year) and the American Society of Civil Engineers Environmental Water Resources Institute meeting (in May or June every year).  I am also proud to be a member of the Association of Environmental Engineering and Science Professors, and I look forward to their conference in June 2017.

How do you spend your spare time?

Boulder, Colorado is a great place to do outdoor activities, and I enjoy hiking, jogging, and horseback riding.  Music is also an important part of my life, and I enjoy going to concerts as well as playing several instruments such as the guitar and piano.  Ben Livneh, one of my co-authors on this paper, is also an avid guitarist himself, and we have made music together in addition to publishing.

Which profession would you choose if you were not a scientist?

One of my favourite parts about being a professor is in interacting with students, other researchers, and the general public.  So, if I were to choose another profession I would want it to be one that includes a lot of communication and public outreach!

Can you share one piece of career-related advice or wisdom with other early career scientists?

The most rewarding part of my career so far has been in working with smart people with diverse interests, that allow us to expand our approaches into new areas.  For example, I am beginning a new US National Science Foundation-funded project this year that seeks to advance the design of sustainable building materials, in collaboration with Profs. Wil Srubar and Leah Sprain at the University of Colorado Boulder.  So, when starting your career, don’t be afraid to pursue new lines of inquiry and get out of your comfort zone.  In addition to opening up new research opportunities, it might teach you something about your own area at the same time.  Also, make sure that you are enjoying your work and having fun.  Being able to enjoy the research that you are doing comes through in the quality of the finished product.

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series: Damian Helbling

Damian Helbling, assistant professor of civil and environmental engineering (CEE).

Damian E. Helbling is an Assistant Professor in the School of Civil and Environmental Engineering at Cornell University. His research focuses on the relationship between human social and technological development and the quality of freshwater resources, with a particular interest in the occurrence and fate of anthropogenic organic chemicals in natural and engineered water systems. He received a B.S. in civil engineering from Penn State University along with M.S. and Ph.D. degrees in civil and environmental engineering from Carnegie Mellon University. He spent five years as a postdoctoral research associate at the Swiss Federal Institute of Aquatic Science and Technology (Eawag) prior to his arrival at Cornell in 2014.

Read Damian’s Emerging Investigators review on the Prioritization of suspect hits in a sensitive suspect screening workflow for comprehensive micropollutant characterization in environmental samples and find out more about his work in the interview below:

How has your research evolved from your first to your most recent article?

The consistent theme throughout my research career has been my interest in water. I was motivated to pursue an academic career by my fascination with water and a desire to gain a deeper understanding of the physical, chemical, and biological processes that drive changes in water quality that may ultimately influence the health of aquatic ecosystems or exposed human populations. My first publications as a graduate student focused on describing new approaches to monitor water quality in drinking water distribution systems in real-time to provide early warning of microbial contamination events. My work has evolved since then to focus more on the occurrence and transformation of anthropogenic organic chemicals throughout the entire urban water cycle.

What aspect of your work are you most excited about at the moment?

I am generally excited about the opportunities I have to contribute to the academic culture at Cornell University as both a teacher and a researcher. With respect to research, I am excited about the progress we have made in developing techniques using high-resolution mass spectrometry to more comprehensively assess chemical occurrence in water samples (i.e. environmental forensics) and to elucidate structures of unknown chemicals resulting from chemical or biological transformations (i.e. environmental metabolomics). We use these techniques to improve our fundamental understanding of chemical fate, but also to inform the development of new treatment technologies that may contribute to the removal of trace organic chemicals from water and wastewater.   

How can the accuracy of characterising the occurrence of micropollutants in environmental samples be improved?

The goal of the research described in our manuscript was to develop a suspect screening method that was as accurate as possible in characterizing the occurrence of micropollutants in environmental samples. We achieved that goal, but by aiming for high accuracy, we sacrificed precision. The vision for suspect screening should be towards the development of methods that maximize both accuracy and precision. Fortunately, there is a growing group of scientists working hard towards developing better tools to manipulate large full-scan mass spectral data acquisitions, to predict retention times and MS2 fragmentation patterns of suspect chemicals, and to collect and store mass spectra of large numbers of chemicals as a resource for the research community. Advances in these areas are expected to improve both the accuracy and precision of data-processing pipelines aimed at characterizing the occurrence of micropollutants in a variety of environmental samples.

What do you find most challenging about your research?

A big challenge is understanding the link between a complex characterization of chemical constituents in a water sample and the concomitant risk of those chemical constituents to aquatic ecosystem or human health. We are developing relationships with aquatic ecologists and environmental toxicologists to help us place the results of our work into a health-based context. It is imperative to link exposure and risk to help inform the conversation on regulatory decision making and future urban water policy.

In which upcoming conferences or events may our readers meet you?

I am fond of the Gordon Research Conference on Environmental Sciences: Water and the Association of Environmental Engineering and Science Professors (AEESP) Research and Education Conference. These conferences are held every other year in alternating summers, so I plan to attend these conferences regularly. I am also an active participant at American Chemical Society (ACS) conferences and try to attend at least one of the national meetings each year. 

 How do you spend your spare time?

I have a lot of hobbies and wish I had more spare time to dedicate to those activities! I enjoy the outdoors and spend a lot of time cycling or hiking in the natural areas around Cornell and the Finger Lakes region of New York State. I am also a bit of an audiophile and have a modest collection of vinyl and digital recordings and a handful of acoustic instruments that have lamentably become somewhat neglected in recent years!

Which profession would you choose if you were not a scientist?

I am passionate about both teaching and research, so I could see myself focusing on a career in education irrespective of my interests in scientific research. If I were to switch gears all together, I can imagine myself as a small-business entrepreneur. I have been known to daydream about concepts for new types of shops or cafes and could see myself enjoying the challenge of building a small-business in an exotic location!

Can you share one piece of career-related advice or wisdom with other early career scientists?

Seize the opportunities that come your way.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)