Archive for the ‘Board News’ Category

New appointments to the Environmental Science: Processes & Impacts Advisory Board

  Alexandria Boehm is a Professor in the Department of Civil and Environmental Engineering at the University of Stanford. Her primary research areas are coastal water quality and sanitation with a focus on waterborne pathogens. Her work is focused on key problems in both, developed and developing countries with the overarching goal of designing and testing novel interventions and technologies for reducing the burden of waterborne disease.


   
  Philip Gschwend is a Professor of Civil and Environmental Engineering at MIT. His research focuses on environmental organic chemistry, including phase exchanges and transformation processes, modeling fates of organic pollutants, roles of colloids and black carbons and passive sampling for site evaluation.


  Andreas Kappler is professor for geomicrobiology at the University of Tübingen, Germany, and his main research is the biogeochemical cycle of iron and the consequences for the fate of pollutants and trace metals in modern environments as well as the consequences for rock formation on early Earth.
  Karen Kidd is based at the University of New Brunswick, Canada. Her research interests focus on fate and effects of contaminants in aquatic food webs.


   
  Linsey Marr is a Professor of Civil and Environmental Engineering at Virginia Tech. She is interested in characterizing the emissions, fate, and transport of air pollutants in order to provide the scientific basis for improving air quality and health.


  Junji Cao is the Director of the Key Laboratory of Aerosol Chemistry and Physics and the Vice President of the Institute of Earth Environment at the Chinese Academy of Sciences. His work encompasses three main strands – carbonaceous aerosol chemistry, atmospheric chemistry and urban atmospheric pollution.

 

  Urs Baltensperger is the Head of the Laboratory of Atmospheric Chemistry at the Paul Scherrer Institute. His work focuses on aerosol science and technology.


  Beate Escher is the Head of the Department of Cell Toxicology at the Helmholtz Centre for Environmental Research. Her research interests focus on mode-of-action based environmental risk assessment, including methods for initial hazard screening and risk assessment of pharmaceuticals, pesticides, disinfection by-products and persistent organic pollutants with an emphasis on mixtures.


  Derek Muir is a Senior Research Scientist and Section Head at the Environment and Climate Change Canada. His work aims to develop knowledge on the distribution, fate and bioaccumulation of priority substances in order to provide policy- and decision-makers with information to make sound decisions on assessment and management of chemicals.


  Jasquelin Peña is an Associate Professor in the Faculty of Geoscience and Environment at the University of Lausanne. Her research is aimed at improving the environmental quality of soils and waters impacted by metal pollution.


  Kathrin Fenner is a Senior Scientist in the Department of Environmental Chemistry at Eawag. The goal of her research is to develop more accurate methods to assess persistence and risk from transformation product formation in regulatory risk assessment procedures. Her work focuses on three main strands – prediction of biodegradation pathways and rates, hazard and risk assessment of transformation products and improved tools for persistence assessment.


  David Waite is a Scientia Professor in the School of Civil and Environmental Engineering and the Dean of Research in the Faculty of Engineering at the University of New South Wales. His biogeochemical work aims to improve our understanding of natural aquatic systems and enables us to i) prevent environmental degradation and ii) develop appropriate solutions to challenges such as provision of water supply and improving human health.


 
Sachchida Nand (Sachi) Tripathi
is a Rajeeva and Sangeeta Lahri Chair Professor in the Department of Civil Engineering & Department of Earth Sciences at the Indian Institute of Technology Kanpur. His research focuses on the chemical, microphysical and optical properties of aerosols.
  Stuart Harrad is a Professor of Environmental Chemistry at the University of Birmingham. His research addresses all aspects of the environmental sources, fate and behaviour of persistent organic pollutants (POPs). He has particular interests in human exposure to POPs with a focus on indoor pathways. He is also active in research that explores the environmental forensics utility of chirality.


  Jian-Ying Hu is a Professor of Urban and Environmental Science at the Peking University. Her work focuses on the occurrence and fate of environmental contaminants, toxicology mainly for endocrine disrupting chemicals and health/ecological risk assessment.

Also appointed but not pictured:

Ruben Kretzschmar is a Full Professor of Soil Chemistry and head of the Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Sciences at ETH Zurich. His current work focuses on the biogeochemistry of metals and metalloids in periodically flooded or water-saturated soils, such as contaminated river floodplains and irrigated rice paddies.

 

Also of interest: Read some of the high-impact research authored by our new Advisory Board members in Environmental Science: Processes & impacts using the links below:

Steroidal estrogen sources in a sewage-impacted coastal ocean
David R. Griffith, Melissa C. Kido Soule, Timothy I. Eglinton, Elizabeth B. Kujawinski and   Philip M. Gschwend
Environ. Sci.: Processes Impacts, 2016, 18, 981-991
DOI: 10.1039/C6EM00127K

Sorption selectivity of birnessite particle edges: a d-PDF analysis of Cd(II) and Pb(II) sorption by δ-MnO2 and ferrihydrite
Case M. van Genuchten and Jasquelin Peña
Environ. Sci.: Processes Impacts, 2016, 18, 1030-1041
DOI: 10.1039/C6EM00136J

Highly time resolved chemical characterization of submicron organic aerosols at a polluted urban location
Bharath Kumar, Abhishek Chakraborty, S. N. Tripathi and Deepika Bhattu
Environ. Sci.: Processes Impacts, 2016, 18, 1285-1296
DOI: 10.1039/C6EM00392C

Emerging halogenated flame retardants and hexabromocyclododecanes in food samples from an e-waste processing area in Vietnam
Fang Tao, Hidenori Matsukami, Go Suzuki, Nguyen Minh Tue, Pham Hung Viet, Hidetaka Takigami and Stuart Harrad
Environ. Sci.: Processes Impacts, 2016, 18, 361-370,
DOI: 10.1039/C5EM00593K

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Introducing our new Editorial Board Member – Marianne Glasius

We are delighted to introduce Marianne Glasius as a new Editorial Board Member for Environmental Science: Processes & Impacts. Marianne joins the team as an Editorial Board Member, and will start her role as Associate Editor from January 2017.


Marianne will be joining Liang-Hong Guo, Helen Hsu-Kim, Edward Kolodziej, Matthew MacLeod and Paul Tratnyek as Associate Editors handling submissions to the journal.

Marianne Glasius is Associate Professor at the Department of Chemistry at Aarhus University, Denmark (since 2006), where she is also affiliated with the Interdisciplinary Nanoscience Center and the Arctic Research Centre. She received her Ph.D. in Chemistry from University of Southern Denmark in 2000. During her studies she stayed at the European Commissions Joint Research Centre, Ispra, Italy for a year. Dr. Glasius was a scientist and senior scientist at the National Environmental Research Institute, Denmark for six years. Recently, she visited University of California, Berkeley for one year, working with Prof. A.H. Goldstein at the Department of Environmental Science, Policy and Management.

The research of Dr. Glasius focuses on development and application of advanced chemical analyses for identification and characterization of organic compounds in complex matrices. The aim is to obtain understanding of processes whether these involve atmospheric aerosols affecting air pollution and climate, or development of bio-fuels of the future.



———-

Please join us in welcoming Marianne to Environmental Science: Processes & Impacts.

Interested in the latest news, research and events of the Environmental Science journals? Find us on Twitter:@EnvSciRSC

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Introducing our new Associate Editors

We are delighted to introduce Helen Hsu-Kim, Matthew MacLeod and Paul Tratnyek as three new Associate Editors for Environmental Science: Processes & Impacts.

Helen, Matt and Paul join Liang-Hong Guo and Ed Kolodziej as Associate Editors handling submissions to the journal – more details about their research interests are given below.


Helen Hsu-Kim
Duke University, USA

Heileen (Helen) Hsu-Kim is the Yoh Family Associate Professor of Environmental Engineering at Duke University. Her expertise areas include aquatic geochemistry, biogeochemistry of metal pollutants in the environment, and nanogeoscience.

Ongoing research activities in Dr. Hsu-Kim’s group include studies on mercury biogeochemistry and remediation, mineral-microbe interactions, the disposal implications and reuse opportunities for coal ash, and the environmental impacts of nanotechnology. Additional details of the Hsu-Kim research group can be found online here.

Please note that Professor Hsu-Kim will start handling submissions starting on June 2016.


Matthew MacLeod
Stockholm University, Sweden

Matthew MacLeod is Professor of Environmental Chemistry at the Department of Environmental Science and Analytical Chemistry at Stockholm University. He holds a Bachelor of Science degree in Chemistry from the University of Victoria (British Columbia, Canada), and a PhD in Environmental Chemistry from Trent University (Ontario, Canada).

He was a post-doctoral fellow at the Lawrence Berkeley National Laboratory in Berkeley, California, USA, and a Research Group Leader at the Swiss Federal Institute of Technology (ETH) in Zürich, Switzerland.

Since 2010 he has been a faculty member at Stockholm University, Sweden.  Prof. MacLeod’s research interests include the fate, exposure and effects of persistent organic pollutants (POPs), modeling chemical pollutants, and environmental impacts of micro- and macro-plastics.


Paul Tratnyek
Oregon Health & Science University, USA

Paul G. Tratnyek is currently Professor, and Associate Head, in the Division of Environmental and Biomolecular Systems (EBS) and Institute of Environmental Health (IEH), at the Oregon Health & Science University (OHSU).

He received his Ph.D. in Applied Chemistry from the Colorado School of Mines (CSM) in 1987; served as a National Research Council Postdoctoral Fellow at the U.S. Environmental Protection Agency Laboratory in Athens, GA (ERD-Athens), during 1988; and as a Research Associate at the Swiss Federal Institute for Water Resources and Water Pollution Control (EAWAG) from 1989 to 1991.

His research concerns the physico-chemical processes that control the fate and effects of environmental substances, including minerals, metals (for remediation), organics (as contaminants), and nanoparticles (for remediation, as contaminants, and in biomedical applications).

Dr. Tratnyek is best known for his work on the degradation of groundwater contaminants with zero-valent metals, but his interests extend to all aspects of contaminant reduction and oxidation (redox) in all aquatic media. Some of his recent work emphasizes the fate/remediation of emerging contaminants (e.g., nanoparticles and 1,2,3-trichloropropane).

———-

The appointments of Helen, Matt, and Paul, illustrate the exciting future for Environmental Science: Processes & Impacts, as outlined by Editor-in-Chief Professor Kris McNeill in his recent Editorial. We are delighted to welcome them to the Environmental Science: Processes & Impacts team.

Interested in the latest news, research and events of the Environmental Science journals? Find us on Twitter: @EnvSciRSC

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

New Editor-in-Chief for Environmental Science: Processes & Impacts

We are pleased to announce that Professor Kris McNeill (ETH Zürich) will be taking on the role of Editor-in-Chief for Environmental Science: Processes & Impacts from 2016. Professor McNeill has been an active member of the Editorial Board of Environmental Science: Processes & Impacts for several years.

His research focuses on environmental chemistry in aquatic systems, particularly regarding reaction mechanisms. Kris takes over from Professor Frank Wania, who finished his term as Chair of the Editorial Board at the end of 2015.

Read Kris’ most recent work in Environmental Science: Processes & Impacts below:

Aquatic photochemical kinetics of benzotriazole and structurally related compounds, Elisabeth M. L. Janssen, Emily Marron and Kristopher McNeill, Environ. Sci.: Processes Impacts, 2015, 17, 939–946, DOI:  10.1039/C5EM00045A

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Introducing Desirée Plata, new Editorial Board member

Continuing our series of blog posts introducing the newest Editorial Board members of Environmental Science: Processes & Impacts, in this article we are delighted to welcome Desirée Plata as a new Editorial Board member of the journal!

Dr Plata holds a Ph.D. in Environmental Chemistry and Chemical Oceanography from the MIT and the Woods Hole Oceanographic Institution. She has a B.S. in Chemistry from Union College and proudly attended Gould Academy for high school.

Desirée’s Research

Desirée’s interests focus on improving the development of novel chemicals and engineered systems to include environmental objectives, along with traditional performance and cost metrics.

She seeks to predict and mitigate environmental damage through physiochemical understanding of material reactivity, prognostic fate models, and geochemical analyses. Also, she is working towards the design of benign syntheses via mechanistic understanding of chemical reactions used in industrial processes.

MY RESEARCH VISION:

“I envision a future in which technological solutions do more good than harm. In particular, I think environmental scientists should work with material and process designers to ensure technologies that both sustain and advance environmental health.

My group strives to have this synergy result in a product or process that is not only better for the environment, but better performing as well. I believe this type of work will eventually redefine the role of environmental scientists and engineers in innovation and, ultimately, the approach to innovation globally.”

Make sure you don’t miss out on the latest journal news by registering your details to receive the regular Environmental Science: Processes & Impacts e-alert.

Chat with us on Twitter! @ESPI_RSC

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Introducing Associate Editor, Edward P. Kolodziej

We are delighted to welcome new Associate Editor Ed Kolodziej to the Environmental Science: Processes & Impacts Editorial Board in the fifth of our Introducing series of blog posts.

Ed received a Ph.D. in Environmental Engineering at the University of California, Berkeley in 2004. He is currently an Associate Professor at the University of Washington, with joint appointments  in the School of Interdisciplinary Arts and Sciences (UW Tacoma), and the Department of Civil & Environmental Engineering (UW Seattle).   He is also affiliated with the Center for Urban Waters, also located in Tacoma, Washington.

Ed’s Research

Ed’s research investigates the transport, fate, reactions and ecological implications of human-derived pollutants in natural and engineered aquatic systems. He also investigates how engineered treatment systems work and optimizes their performance for contaminant removal, with a special interest in non-point source pollution and engineered natural systems.

MY RESEARCH VISION:

It is evident that human activities have significant impacts on water quality, but I think we don’t actually know the answers to “how, what, when” type questions yet to understand what these impacts really are.  These are key questions to answer: Which chemicals matter? Which don’t?  What should we do about them?  We are discharging tens and even hundreds of thousands of chemicals into water, air, and soil, yet we have an surprisingly incomplete understanding of whether this is a bad idea or not, whether any adverse impacts occur on our ecosystems or us from these pervasive  exposures. We still struggle to prioritize our efforts on understanding chemical fate and impacts, and for those with adverse impacts, what the best mitigation and treatment strategies are.  So, I’d say my research vision is to try and figure out which of these chemical impacts on water quality are important and which are not.  Once we understand that question, we can move on to technical and policy solutions for problematic compounds.

Having grown up in the outdoors, especially fishing with my family, I am pretty sure that I really like water and spending time around it!  So I am inspired and motivated by the thought that I can be part of this larger effort in making sure humans and ecosystems have enough of the high quality water we all need. It’s so clear that we are not on a sustainable path, and we need to figure out some good solutions to the worst problems, including preventing future problems, in a world of limited resources.

Ed is now accepting submissions – submit your manuscript to him today!

Make sure you don’t miss out on the latest journal news by registering your details to receive the regular Environmental Science: Processes & Impacts e-alert.

Follow us on Twitter @ESPI_RSC.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Introducing Editorial Board Member Yngvar Thomassen

The fouth of our Introducing series of blog posts features Editorial Board member Professor Yngvar Thomassen – we’re very pleased to welcome him to the board and post his profile and research vision:

Yngvar Thomassen

Yngvar is currently a Research Director for the Department of Chemical and Biological Work Environment at the National Institute of Occupational Health in Oslo – where he has spent 35 years of his professional life. After graduating from the Department of Analytical Chemistry at the University of Oslo in 1973, Yngvar spent a year at the Norwegian Defence Institute before taking a post research associate position, back at the University of Oslo.In 1978 he worked for the Department of Environmental Studies and Geology at the University of Toronto as a visiting scientist. He has since been appointed as a Professor in Environmental chemistry, Department of Plant and Environmental Science, at the Norwegian University of Life Sciences.

MY RESEARCH VISION:

My passion for research and teaching derives from my quest for social and environmental interest. This has inspired me throughout my professional life as an analytical chemist. From occupational and personal use of products to nutritional intake people are exposed to a variety of chemical agents – many essential or non-essential compounds with the potential to affect our health. Analytical science has been and is an important instrument in chemical exposure science which strives to collect and analyse qualitative and quantitative information which is needed to understand the nature of contact between people and chemical stressors. There are a continuous demand for exposure science information to meet the need to understand the fate of stressors and to establish exposure data, not only for the existing chemical agents, but also for the thousands of  new chemicals introduced into the marked each year.

Although analytical science has brought about a recent revolution in exposure characterization and dose assessment, now even able to reach the nanoscopic domain and fundamental limits of atom or molecule detection, these developments need to be further integrated into more portable and direct reading instruments for biological and environmental monitoring for faster identification of chemical stressors affecting our health. Of special importance is further improvement of ambient, indoor and work-room air qualities since airborne contaminants still seriously affects the health of workers and the global population at large. In order to achieve this,  an expanded integrated vision in exposure science which consider exposures from source to dose, over time and space, as well as multiple stressors are required. Thus, the society should give priority to

a) educate the next generation of analytical and exposure scientists

b) further develop new and improve existing instrumentation

c) stimulate to strategic collaboration across scientific boarders

d) develop prevention and intervention strategies to reduce any related health problems

e) improve quality of exposure data collected and make them available to help set priorities and inform policy

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

2014 Emerging Investigators Issue

Emerging Investigators Guest Editors David Cwiertny, Juana Maria Delgado-Saborit and Hee-Deung Park introduce the third edition of our emerging investigators issue.

Celebrating the best and brightest amongst early career environmental scientists around the world, this collection of reviews and papers demonstrates the talent, innovation and creative ideas that new researchers can bring.  Read the profiles of the contributors to find out more about our young scientists, including their research objectives, inspirations and what environmental challenges they believe the future holds.

We have made the following HOT articles free* to access for a limited time only! We hope you enjoy reading this collection as much as we did.

Critical Reviews:

B. D. Shoener, I. M. Bradley, R. D. Cusick and J. S. Guest
DOI: 10.1039/C3EM00711A

Critical Review of electrochemical advanced oxidation processes for water treatment application

Brian P. Chaplin
DOI: 10.1039/C3EM00679D


impacts of UV protections on bacterial survival

HOT Paper:

Association of nuisance filamentous algae Cladophora spp. with E. coli and Salmonella in public beach waters: impacts of UV protection on bacterial survival

Aubrey Beckinghausen, Alexia Martinez, David Blersch and Berat Z. Haznedaroglu
DOI: 10.1039/C3EM00659J

For the full collection, visit our 2014 Emerging Investigators Themed Issue platform.

*Access is free through a registered RSC account – click here to register

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Aquatic Photochemistry Themed Issue

The field of aquatic photochemistry is diverse and strong, therefore our Editorial Board member, Kristopher McNeill presents a themed issue covering a range of topics and sub-disciplines within environmental science, representing current aquatic photochemical research.

Kristopher found the process of guest editing the aquatic photochemistry themed issue rewarding. ‘From the very start, I had an enthusiastic response to my call for papers and, when looking at the collection in its final form, I was extremely happy with the quality and breadth of the science that it reflected’ he says.

‘I was especially happy with the contributions of the young investigators; from whom I am sure we will be seeing a lot more in the future.’ Kristopher selected 2 critical reviews and a paper by young investigators who contributed to this collection and for a limited time only, these articles are free* to access. Click the following links to download the full articles.

Critical Reviews:

Photo-transformation of pharmaceutically active compounds in the aqueous environment: a review
Shuwen Yan and Weihua Song
DOI: 10.1039/C3EM00502J

The role of indirect photochemical degradation in the environmental fate of pesticides: a review
Christina K. Remucal
DOI: 10.1039/C3EM00549F

Paper:

Photometric hydroxyl radical scavenging analysis of standard natural organic matter isolates
J. E. Donham, E. J. Rosenfeldt and K. R. Wigginton
DOI: 10.1039/C3EM00663H

Kristopher’s research paper on photochemically produced hydroxyl radical in artic surface water was included in this collection. We would like to thank him for guest editing this exciting issue; his paper will be free* to access until Friday 20th June 2014.

Evidence for dissolved organic matter as the primary source and sink of photochemically produced hydroxyl radical in arctic surface waters
Sarah E. Page, J. Robert Logan, Rose M. Cory and Kristopher McNeill
DOI: 10.1039/C3EM00596H

*Access is free until 20.06.14 through a registered RSC account – click here to register

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Introducing Editorial Board member David Cwiertny

The third of our Introducing series of blog posts features Editorial Board member David Cwiertny – we’re very pleased to welcome him to the board and post his profile and research vision:

David Cwiertny holds a BS in Environmental Engineering Science with a minor in Chemistry from the University of California, Berkeley awarded in 2000. He then received his PhD in Environmental Engineering from Johns Hopkins University (Baltimore, Maryland, USA) in 2005. After completing his doctoral work, he served as a post-doctoral research associate at the University of Iowa in joint appointment between the Departments of Civil and Environmental Engineering and Chemistry. In the Fall of 2011, he returned to the University of Iowa as an Assistant Professor in the Department of Civil and Environmental Engineering after serving four years in the same capacity at the University of California, Riverside. His research program broadly focuses on pollutant fate in natural and engineered systems, with a particular emphasis on the development of materials-based treatment technologies that promote water sustainability. This includes projects on the transformation of emerging contaminant classes (e.g., synthetic hormones and pharmaceuticals) in natural aquatic systems, and the development of nanomaterial-enabled technologies for advanced chemical treatment of water and wastewater. At the University of Iowa, he is a core faculty member in the campus-wide Water Sustainability Initiative, developing interdisciplinary research, outreach and education programs intended to increase water awareness at the University and across the state of Iowa.

Here David presents his research vision. Click “Read more” below to find out more!

RESEARCH VISION: A motivating theme for research in the Cwiertny lab is the belief that the unique reactivity displayed by materials within the nanodomain can be exploited to overcome challenges that have long stymied water quality engineers.  Indeed, we believe that engineered nanomaterials hold great promise, and are perhaps ideally suited, for moving society toward more sustainable water supplies.  Engineered nanomaterials are versatile at a range of scales, and are likely to be particularly relevant in decentralized or point-of-use treatment systems. Inherently, such applications require smaller, more efficient technologies.  Building blocks for multi-functional, hybrid technologies can potentially decrease the size of treatment.  In addition to being relevant in rural areas and in smaller communities that can often struggle to maintain compliance with existing and future regulations, they also may help to revolutionize water treatment in the developing world.  Of course, there remain challenges to the widespread acceptance of nanomaterials in treatment, including finding responsible platforms in application given concerns over their inadvertent release into the environment.  However, we believe the future of research in environmental nanotechnology will bridge the fundamental and the practical, allowing nanomaterials to fulfill their promise in the realm of water treatment.

(more…)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)