Author Archive

Introducing our new Editorial Board Member – Marianne Glasius

We are delighted to introduce Marianne Glasius as a new Editorial Board Member for Environmental Science: Processes & Impacts. Marianne joins the team as an Editorial Board Member, and will start her role as Associate Editor from January 2017.


Marianne will be joining Liang-Hong Guo, Helen Hsu-Kim, Edward Kolodziej, Matthew MacLeod and Paul Tratnyek as Associate Editors handling submissions to the journal.

Marianne Glasius is Associate Professor at the Department of Chemistry at Aarhus University, Denmark (since 2006), where she is also affiliated with the Interdisciplinary Nanoscience Center and the Arctic Research Centre. She received her Ph.D. in Chemistry from University of Southern Denmark in 2000. During her studies she stayed at the European Commissions Joint Research Centre, Ispra, Italy for a year. Dr. Glasius was a scientist and senior scientist at the National Environmental Research Institute, Denmark for six years. Recently, she visited University of California, Berkeley for one year, working with Prof. A.H. Goldstein at the Department of Environmental Science, Policy and Management.

The research of Dr. Glasius focuses on development and application of advanced chemical analyses for identification and characterization of organic compounds in complex matrices. The aim is to obtain understanding of processes whether these involve atmospheric aerosols affecting air pollution and climate, or development of bio-fuels of the future.



———-

Please join us in welcoming Marianne to Environmental Science: Processes & Impacts.

Interested in the latest news, research and events of the Environmental Science journals? Find us on Twitter:@EnvSciRSC

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Major society chemistry publishers jointly commit to integration with ORCID

ORCID provides an identifier for individuals to use with their name as they engage in research, scholarship and innovation activities, ensuring authors gain full credit for their work.

Today, we signed their open letter, along with ACS Publications, committing to unambiguous identification of all authors that publish in our journals.

image block
The Royal Society of Chemistry and the Publications Division of the American Chemical Society (ACS) today each became signatories to the ORCID Open Letter, reasserting the commitment of both organizations to enhancing the scholarly publishing experience for researchers worldwide who are involved in chemistry and allied fields.

The commitment by these two global chemistry publishers to undertake new workflow integration with technology infrastructure provided by ORCID, a not-for-profit organization that provides unique identifiers for researchers and scholars, will enable both societies to provide unambiguous designation of author names within chemistry and across the broader sciences. This partnership with ORCID will resolve ambiguity in researcher identification caused by name changes, cultural differences in name presentation, and the inconsistent use of name abbreviations that is too often a source of confusion for those who must rely on the published scientific record.

By becoming signatories to the ORCID Open Letter, these two major chemical societies are voicing their intent to collect ORCID iDs for all submitting authors through use of the ORCID API, and to display such identifiers in the articles published in their respective society journals. The integration of such activities within the publishers’ workflows means authors will benefit from automated linkages between their ORCID record and unique identifiers embedded within their published research articles, ensuring their contributions are appropriately recognized and credited.

During the publishing process, ACS and the Royal Society of Chemistry will automatically deposit publications to Crossref, which in turn will coordinate with ORCID to link and update the publishing activity populated to authors’ respective ORCID profiles, thus attributing each published work to the correct researcher. Existing holders of an ORCID iD will encounter a one-time prompt to grant permission for the linkage. If authors do not have an ORCID iD, they can easily enroll without navigating away from the publishers’ manuscript submission site. If users wish to revoke integrated ORCID profile access at any time, they can elect to do so through their ACS, Royal Society of Chemistry or ORCID accounts.

Both ACS Publications and the Royal Society of Chemistry understand the importance of attributing accurately the scholarly contributions of research scientists in the context of their other professional activities. “ACS has supported ORCID since the outset of the initiative,” says Sarah Tegen, Ph.D., Vice President of Global Editorial & Author Services at ACS Publications. “We are pleased now to align with the Royal Society of Chemistry in this endeavor, as both societies underscore our willingness not only to encourage and assist our respective authors in establishing their unique ORCID profiles, but also to help tackle the broader challenge of researcher name disambiguation in the scholarly literature. With the integration of author ORCID iDs in our publishing workflows, we will ensure that researchers receive proper credit for their accomplishments.”

Emma Wilson, Ph.D., Director of Publishing at the Royal Society of Chemistry adds, “We have been a supporter of ORCID since 2013, recognizing the benefits it brings to researchers; ORCID can and will make a huge difference to our authors’ ability to gain full credit for their work. ORCID will also help researchers meet the requirements of their research funders — for example, a number of funders have already announced that all grant applicants must now include a researcher’s ORCID iD. A unified system that integrates and links research-related information with accurate and timely linkage to the publishing output of authors has the potential to simplify and speed up their grant applications — something we know is important to researchers.”

“The ACS and the Royal Society of Chemistry have been long-standing supporters of ORCID,” says Laurel Haak, Ph.D., Executive Director, ORCID. “We are pleased to see ORCID integration into ACS and Royal Society of Chemistry Publications systems. This will be a substantial benefit to researchers in the chemistry community, both in improving search and discovery of research articles, and for attribution and recognition of researchers’ contributions to the discipline.”

About the American Chemical Society and ACS Publications

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With nearly 157,000 members, ACS is the world’s largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

ACS Publications, a division of the American Chemical Society, is a nonprofit scholarly publisher of 50 peer-reviewed journals and a range of eBooks at the interface of chemistry and allied sciences, including physics and biology. ACS Publications journals are among the most-cited, most-trusted and most-read within the scientific literature. Respected for their editorial rigor, ACS journals offer high-quality service to authors and readers, including rapid time to publication, a range of channels for researchers to access ACS Publications’ award-winning web and mobile delivery platforms, and a comprehensive program of open access publishing options for authors and their funders. ACS Publications also publishes Chemical & Engineering News — the Society’s newsmagazine covering science and technology, business and industry, government and policy, education and employment aspects of the chemistry field.

About the Royal Society of Chemistry

The Royal Society of Chemistry is the world’s leading chemistry community, advancing excellence in the chemical sciences. With over 50,000 members and a knowledge business that spans the globe, we are the U.K.’s professional body for chemical scientists; a not-for-profit organisation with 175 years of history and an international vision for the future. We promote, support and celebrate chemistry. We work to shape the future of the chemical sciences — for the benefit of science and humanity.

About ORCID

ORCID’s vision is a world where all who participate in research, scholarship and innovation are uniquely identified and connected to their contributions across disciplines, borders and time. ORCID provides an identifier for individuals to use with their name as they engage in research, scholarship and innovation activities. It provides open tools that enable transparent and trustworthy connections between researchers, their contributions and affiliations. The organization provides this service to help people find information and to simplify reporting and analysis. ORCID is a not-for-profit organization, sustained by fees from member organizations. Its work is open, transparent and non-proprietary. The organization strives to be a trusted component of research infrastructure with the goal of providing clarity in the breadth of research contributions and the people who make them.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

What to expect from Negative Emission Technologies (NETs) in the UK

As the Paris climate deal takes legal effect, it is necessary to assess the technical aspects and challenges to limit the global temperature increase. Given the problems in completely eliminating greenhouse gases (GHGs) emissions from human activities, one of the possible solutions is using Negative Emission Technologies (NETs) as a way of compensating for those emissions. As the UK has recently stated a target of net zero emission, Smith and colleagues took on a preliminary assessment of land-based NETs in this country in order to estimate their potential and impact.

There are a number of ways negative emissions could compensate for CO2 emissions:

1) Bioenergy with Carbon Capture and Storage (BECCS), using crops to extract CO2 and then burning them for energy and sequestering the result emissions, thought to hold the most potential to bring down CO2 levels

2) Direct Air Capture of CO2 (DAC) from ambient air and either burying it underground or using it in chemical processes

3) Enhanced Weathering of minerals (EW), by spreading pulverised rocks onto soils to increase the natural weathering process that takes up CO2

4) Afforestation and Reforestation (AR)

5) Soil Carbon Sequestration (SCS), which uses modern farming methods to reverse past losses of soil carbon and sequester CO2

6) Biochar, that converts biomass into biochar for use as soil amendment

Smith and colleagues considered the use of UK land specifically and only technical aspects of these technologies. Other factors, e.g. of a socio-political nature, were not considered and are thought to lower the potential of the NETs considerably.

Regarding land availability, BECCS and AR use land that can no longer be used for food production, assumed to be 1.5 Mha. The same value is assumed for biochar, since growing feedstock for it cannot be done in the same land used for food. SCS and EW can be practised on land without changing its use, here assumed to be 8.5 Mha. Finally, DAC has no land footprint so it is not constrained by land availability.

Negative emission potential for BECCS, AR and biochar are 4.5‒18, 5.1 and 1.73‒11.25 Mt C eq. per year, respectively. SCS would deliver 0.255‒8.5 Mt C eq. per year and the combined potential for EW would be 22.5 Mt C per year. DAC is compared at the same level of BECCS, i.e. 4.5‒18 Mt C eq. per year.

In the UK, total emissions of GHGs are equal to an average of 153 Mt C eq. per year. Considering that not all NETs can be applied at the same time and assuming no interaction between practices, the maximum aggregate potential of land-based NETs is estimated to be 12‒49 Mt C eq. per year (BECCS plus SCS plus EW). This represents only 8‒32% of current UK GHGs emissions.  DAC, however, could increase this number further.

This maximum aggregate potential is limited by a number of factors, including cost, energy, environmental and socio-political constraints. More studies are needed to fully understand and hopefully overcome the barriers to implementation and reach the target of net zero emission.

To read the full article for free* click the link below:

Pete Smith, R. Stuart Haszeldine and Stephen M. Smith
Environ. Sci.: Processes Impacts, 2016, 18, 1400-1405
DOI: 10.1039/C6EM00386A

—————-

About the webwriter

Luiza Cruz is a PhD student in the Barrett Group at Imperial College London. Her work is towards the development of new medicines, using medicinal and natural products chemistry.

—————-

*Access is free until 23/12/2016 through a registered publishing personal account.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Closing the window on air pollution

Graphical abstractSwitching off fans and closing car windows can minimise drivers’ exposure to harmful particles.

Sitting in traffic is bad for your lungs, but closing your car windows and switching off the fans can minimise the amount of micro-size pollution particles you breathe, scientists from the UK found.
Air pollution is a major health risk. The World Health Organization estimates that it caused 3.7 million premature deaths in 2012. Last year, a group led by Prashant Kumar from the University of Surrey, UK, showed that drivers stuck at traffic lights are exposed to 29 times more harmful pollution particles than those driving in free flowing traffic.

Switching off fans and closing car windows can minimise drivers’ exposure to harmful particles
Sitting in traffic is bad for your lungs, but closing your car windows and switching off the fans can minimise the amount of micro-size pollution particles you breathe, scientists from the UK found.
Air pollution is a major health risk. The World Health Organization estimates that it caused 3.7 million premature deaths in 2012. Last year, a group led by Prashant Kumar from the University of Surrey, UK, showed that drivers stuck at traffic lights are exposed to 29 times more harmful pollution particles than those driving in free flowing traffic.

Read the full article in Chemistry World.


Concentration dynamics of coarse and fine particulate matter at and around signalised traffic intersections
Prashant Kumar and Anju Goel
Environ. Sci.: Processes Impacts, 2016, Advance Article
DOI: 10.1039/C6EM00215C, Paper

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Ideas towards the eradication of diarrheal diseases in poor countries

Diarrheal disease is the second leading cause of death in children under five years, killing almost 800,000 children every year. A combination of different causes, such as poor hygiene conditions and malnutrition, make low and middle income countries more susceptible to the disease. In recent years, there has been a successful campaign to decrease this high mortality rate, from almost 2.5 million deaths in the year 2000, representing a decrease of 70 to 80%. However, the amount of diarrheal episodes, or morbidity, is still very high. Taking into consideration the problems in decreasing the morbidity, Timothy R. Julian brings a perspective emphasizing the interventions that would be most effective at reducing the burden of diarrheal disease.

The vast majority of diarrheal episodes is caused by pathogens, notably rotavirus, norovirus, E. coli, Shighella spp and Cryptosporidium spp. These present different dose-response relationship, with some being more likely to infect a child after exposure (Figure 1).  According to these estimates, a great decrease in exposure is often need to reduce the probability of infection and therefore interventions should focus on minimising children exposure to the pathogens.

Figure 1. Median estimates for dose-relationship for common diarrheal pathogens.

As data regarding quantitative pathogen and human-environment interaction data is sparse, scientists often use proxy measures, like human feces equivalents, to estimate exposure risks. For example, probability of infection is calculated using the HID50 (the pathogen dose at which there is a 50% likelihood of infection) and the shedding rate (eq. 1). Estimates for environmental contamination is also presented (eq. 2).

Diarrheal disease pathogens – E. coli organisms are usually divided into two categories: enterotoxigenic (ETEC) and enteropathogenic (EPEC). Infectivity is usually strain specific and it is in general relatively low, with HID50s ranging from 105 to 108 cells for ETEC and 105 to 107 cells for EPEC, corresponding to 0.001 to 10 g and 0.01 to 1 g of feces of an infected person, respectively. Despite being similar to E. Coli, Shigella spp are more infective, presenting an HID50 of around 103 cells, which corresponds to 0.01 to 1 g of infected feces. The protozoal pathogens Cryptosporidium spp are highly infective, with an HID50 as low as 9 oocysts (10-1 to 10-5 of the amount of feces shed in a day during infection). With high shedding and high infectivity rates, rotavirus is arguably the most important enteric pathogen: the HID50 is 6 focus-forming units (FFU), equivalent to only 10-3 to 10-9 g feces of an infected person. Different from rotavirus (endemic), norovirus is characterised by its role in epidemic outbreaks. Its HID50 is 1320 genome equivalents for susceptible people (some people are naturally resistant), which corresponds to 10-4 to 10-5 g of infected feces.

Environmental transmission – The routes of transmission can be explained using the F-diagram (Figure 2). The diagram connects six environmental reservoirs for the pathogens. Interactions between infected feces and these reservoirs (through human, animal and natural processes) and subsequent interactions between the reservoirs and susceptible people result in infections.

Figure 2. The F-diagram showing the complex transmission pathways of diarrheal diseases.

With 23% of the global population using unsafe water, this reservoir is arguably the most important route of exposure to the most important pathogens (all of them have been detected in stored drinking water in LMICs), especially for rotavirus, norovirus and Cryptosporidium spp, due to the high infectivity of these.

Food is also an efficient transmission pathway, especially for bacterial pathogens that can grow in these environments. Fecal bacterial is frequently detected on hands on LMICs, posing both a direct and indirect route of transmission. Flies are important due to their interactions with both feces and food. Fields (referring to crops and soil) are primarily an intermediate reservoir, but also play a role in copraphagy and geophagy in some regions. Finally, fomites are extensively contaminated with infected feces in LMICs, contributing to the ubiquity of the pathogens throughout a household and other environments.

Perspective – Having in mind the multiple factors involved in the transmission of diarrheal pathogens (for example, etiology, infectivity, fecal shedding rate, reservoirs, human-reservoirs-nature interactions and sanitation) and that these are most likely region/site/country specific, it is important to combine interventions to interrupt simultaneously all the relevant transmission routes. For bacterial agents, reducing geophagy, prevention of growth in food and fly control could be effective in reducing exposure and therefore infection. Cryptosporidium spp and norovirus are more difficult to control due to high shedding and infectivity rates. A combination of fecal management, water and hygiene control and limited contact with infected people would be necessary. Unfortunately, rotavirus is almost impossible to control, with vaccination, nutrition and health care being the current focus to delay infection until after the first year of the child, when the mortality is reduced.

With multiple and specific interventions is therefore possible to successfully achieve great reductions in the burden of diarrheal diseases in LMICs and maybe reach eradication in the future.

To read the full Open Access article, click the link below:
Environmental transmission of diarrheal pathogens in low and middle income countries
Timothy R. Julian
Environ. Sci.: Processes Impacts, 2016,18, 944-955
DOI: 10.1039/C6EM00222F

—————-

About the webwriter

Luiza Cruz is a PhD student in the Barrett Group at Imperial College London. Her work is towards the development of new medicines, using medicinal and natural products chemistry.

—————-

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigator Series for Environmental Science: Processes & Impacts

Desiree Plata (Yale University) will be overseeing this series and reviewing applications.

Some of the best work in the field of Environmental Science being conducted by early-career researchers was showcased in the Emerging Investigators Issue of Environmental Science: Processes & Impacts. As highlighted in the Editorial introducing this issue, starting in 2017, we will be running an Emerging Investigator Series, similar to the successful series of our sister journal Environmental Science: Water Research & Technology (http://rsc.li/emerging-series). This continuous format is designed to allow more flexibility for contributors to participate in the venture without the restriction of submission deadlines and benefit the Environmental Science community through continued exposure to the exciting work being done by its early-career members.

With the introduction of this new Series, we are delighted to announce that Desiree Plata will be taking on the role of Emerging Investigator Series Editor. Desiree has been an active member of the Environmental Science: Processes & Impacts Editorial Board for over a year and will be overseeing this Series and reviewing applications going forward.

Desiree adds: “I am looking forward to working with my colleagues to build a rigorous series that highlights the most exciting advances in their research. In addition, I hope that the Series will inspire future research directions by identifying needs and synergies in the cross-cutting intellectual spaces we are defining as a community.”

To be eligible for the new Emerging Investigator Series you will need to have completed your PhD (or equivalent degree) within the last 10 years and have an independent career. If you are interested in contributing to the Series please contact the Editorial Office (espi-rsc@rsc.org) and provide the following information:

  • Your up-to-date CV (no longer than 2 pages), which should include a summary of education and career, a list of relevant publications, any notable awards, honours or professional activities in the field, and a website URL if relevant;
  • A synopsis of the article intended to be submitted to the Series, including a tentative submission date. This can be an original research or review article. Please visit the journal website for more details on article types.All articles published as part of the Emerging Investigator Series will be widely promoted and will be collated together on the Journal website. Please note that articles submitted to the journal for the Series will undergo the usual peer-review process.

We hope you enjoy reading the final Emerging Investigators issue in its current form; please contact the Editorial Office (espi-rsc@rsc.org) if you are interested to contribute to the Emerging Investigators Series.

Keep up to date with the latest papers added to this Series on our twitter feed (@EnvSciRSC) with the hashtags #EmergingInvestigators #ESPI

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Water quality indicated by the activation of the oxidative stress response pathway

Water quality assessment is vital for identifying potential hazards to both the environment and human health.  This paper suggests a revolutionary  new approach to toxicity testing which would have significant implications for a wide range of industries and potentially the way in which water quality is measured.

The activation of toxicity pathways may be more sensitive than testing for toxicity endpoints.  This is the principle behind Tox21, a ground-breaking project examining chemicals using high throughput technology.  This same thinking has inspired Escher et al to use an assay to test surface, drinking and wastewater for indicators of oxidative stress and use this as a measure of water quality.

Escher et al used a sensitive cell line (AREc32) which, via luciferase expression, reports the activation of the antioxidant response element (ARE).  The ARE, being sensitive to a relatively wide range of stressors and highly conserved in all human cells is a good toxicity screening tool.

The cell line proved to be sensitive to a variety of the validation test chemicals used, with ARE activation often proving more sensitive than cytotoxicity to stress.

The examination of environmental grab samples provided interesting results suggesting that although water treatment generally reduced stressors which would lead to ARE activation, chlorination increased them.  However, this was reversed by the time the water had reached the drinking tap.

This paper reports the validation and methodology for using this cell line as an indicator for water quality.  Although the authors identified areas for development and improvement the technique has already provided data on an impressive range of samples, illustrating its potential use.  It’s free to access* on our site for the next four weeks, so why not download the paper here:

Water quality assessment using the AREc32 reporter gene assay indicative of the oxidative stress response pathway
Beate I. Escher, Mriga Dutt, Erin Maylin, Janet Y. M. Tang, Simon Toze, C. Roland Wolf and Matti Lang
DOI: 10.1039/C2EM30506B

*Free access to individuals is provided through an RSC Publishing personal account. Registration is quick, free and simple

Published on behalf of Sian Evans, Journal of Environmental Monitoring web science writer. Sian is a PhD student based in Bath, United Kingdom

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

On the cover of issue 10 – polycyclic aromatic hydrocarbons and fog

On the outside front cover, this month’s issue features work from Kalliat Valsaraj and co-workers. In their article, the team investigate the processing of atmospheric polycyclic aromatic hydrocarbons (PAHs) during fog events.

The authors identified two processing pathways: (i) the dissolution of OPAC from particulate matter and (ii) the uptake and oxidation of PAH in the fog water droplets.

Read more in the full article:

Processing of atmospheric polycyclic aromatic hydrocarbons by fog in an urban environment
Franz S. Ehrenhauser, Kalindi Khadapkar, Youliang Wang, James W. Hutchings, Olivier Delhomme, Raghava R. Kommalapati, Pierre Herckes, Mary J. Wornat and Kalliat T. Valsaraj
DOI: 10.1039/C2EM30336A

Other HOT articles in this issue include:

Comprehensive environmental review following the pork PCB/dioxin contamination incident in Ireland
Ian Marnane
DOI: 10.1039/C2EM30374D

Using passive air samplers to assess local sources versus long range atmospheric transport of POPs
Anne Karine Halse, Martin Schlabach, Andy Sweetman, Kevin C. Jones and Knut Breivik
DOI: 10.1039/C2EM30378G

Levels and distribution of hexabromocyclododecane (HBCD) in environmental samples near manufacturing facilities in Laizhou Bay area, East China
Honghua Li, Qinghua Zhang, Pu Wang, Yingming Li, Jianxia Lv, Weihai Chen, Dawei Geng, Yawei Wang, Thanh Wang and Guibin Jiang
DOI: 10.1039/C2EM30231D

Assessment of environmental mercury discharge at a four-year-old artisanal gold mining area on Lombok Island, Indonesia
Baiq Dewi Krisnayanti, Christopher W. N. Anderson, Wani Hadi Utomo, Xinbin Feng, Eko Handayanto, Nurul Mudarisna, Hadiman Ikram and Khususiah
DOI: 10.1039/C2EM30515A

The application of biochemical responses to assess environmental quality of tropical estuaries: field surveys
Luciane Alves Maranho, Camilo Dias Seabra Pereira, Rodrigo Brasil Choueri, Augusto Cesar, Paloma Kachel Gusso-Choueri, Ronaldo José Torres, Denis Moledo de Souza Abessa, Rodofley Davino Morais, Antônio Aparecido Mozeto, Tomás Angel DelValls and María Laura Martín-Díaz
DOI: 10.1039/C2EM30465A

Also in this issue is our monthly Environmental Digest -covering legislation, environmental quality, chemical hazards, public and occupational health and research activities from Europe and around the world, it’s an invaluable source of environmental information.

Environmental digest
DOI: 10.1039/C2EM90047E

Read the rest of the issue here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

HOT article: flame retardants in birds’ eggs; and a review focusing on the economic benefit of using source separation of urine to contain and treat endocrine disrupters

In this HOT article from researchers in Canada, the authors investigate the possibility of using American kestrel and European starling eggs as bio-monitoring species for flame retardant contamination in terrestrial ecosystems.

Testing for for sixteen PBDE congeners and nineteen non-PBDE flame retardants, the authors were able to detect major components of commercial mixtures, and found point source influences for some geographical areas.

Flame retardants in eggs of American kestrels and European starlings from southern Lake Ontario region (North America)
Da Chen, Robert J. Letcher and Pamela Martin
DOI: 10.1039/C2EM30472D

In their critical review, researchers from the University of Hawaii have carried out an economic appraisal into the separation of human urine from other waste waters at the source, and the subsequent storage and treatment of this separated water.

They conclude that energy, water and nutrients could be saved using this approach, along with decreasing green house gas emissions.

An economic appraisal of using source separation of human urine to contain and treat endocrine disrupters in the USA
Krishna Lamichhane and Roger Babcock
DOI: 10.1039/C2EM30254C

All our HOT articles are free to access for 4 weeks following a simple registration.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Journal of Environmental Monitoring name change

Important news re: Journal of Environmental Monitoring

The name of a journal should accurately reflect the content that it publishes; in the case of the Journal of Environmental Monitoring it is apparent that the phrase ‘environmental monitoring’ clearly misrepresents the breadth of the journal.

Following consultation and feedback from the environmental science community, Journal of Environmental Monitoring is to be renamed Environmental Science: Processes & Impacts from Issue 1, 2013. This move is wholeheartedly supported by the Editorial Board who are confident that the new name demonstrates that the journal focuses on environmental processes and relevant impacts and not on issues associated with monitoring activities.

As an author or reader, you can be assured of the same rigorous standards that you have come to expect from other high calibre RSC journals.

Importantly, the scope of the journal remains the same.

Subscribers can expect to see Environmental Science: Processes & Impacts on their renewals letters for 2013. There will be new online and print ISSNs, but otherwise the transition will be seamless, as the journal content will be published on the same web page.

If you have any questions, please contact us.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)