Author Archive

Harvesting electricity from seawater

A new type of blue energy harvesting device may offer a practical method of continuous coastal electricity generation.

In 2011, Stanford researchers described a new form of energy harvesting device coined as a “mixing entropy battery” in Nano Letters1. Their device capitalized on the chemical energy available in a system where an ion concentration gradient is present; in this case where low salinity wastewater or river water was mixed with ~0.6 M NaCl rich seawater. It is estimated that during this mixing process, there is a free energy reduction of 2.2 kJ per liter of freshwater.

Extractable Energy Per Cycle

Extractable energy depends on charging time

Using two electrodes, one Na+ selective the other Cl selective, a charging state exists when the battery is exposed to low salinity water, where ions in the electrodes are removed via a concentration gradient. Next, sea water replaces the low salinity water and the potential between the electrodes increases. This is followed by a discharge state where ions from the higher concentration solution reincorporate into their ion selective electrode . This charge/discharge cycle produces extractable energy per cycle as described in the figure shown.

In the present work, the same group investigates replacing the cathode material with a higher capacity material, Na4Mn9O18, as opposed to the previously reported Na2M5O10. An overall improvement was observed when researchers simulated batteries hooked up in a series, by passing the same effluent wastewater 12 times through the same cell. In doing so, the cumulative energy produced was 0.44 kWh/m3 of wastewater, compared to the theoretical maximum of 0.65 kWh/m3. This denotes an overall efficiency of 68%. Future considerations include reducing the number of batteries required in series, as well as eliminating the use of silver as a Cl selective electrode, for environmental concerns.

1.) Nano Lett., 2011, 11, 1810–1813

Interested? Read the full advance article in Energy and Environmental Science here:

Performance of a mixing entropy battery alternately flushed with wastewater effluent and seawater for recovery of salinity-gradient energy

Meng Ye, Mauro Pasta, Xing Xie, Yi Cui, and Craig S. Criddle
Energy Environ. Sci., 2014, Advance Article
DOI: 10.1039/C4EE01034E

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Porous Polymer Networks for Industrial CO2 Capture

Efforts towards a less energy and environmentally intensive method for CO2 capture has resulted in a novel porous polymer with noteworthy performance.

Current industrial standards for carbon dioxide scrubbing in coal-fired power plants utilize an energy intensive liquRates of CO2 Adsorptionid amine process to reduce CO2 gas emissions. Ultimately, a technology that can reduce the energy input required to release captured CO2 while maintaining substantial adsorption selectivity and capacity would be ideal. Investigations performed at Texas A&M have demonstrated high adsorption capacities of 1.7 mmol CO2 /g polymer with a gas flow comprised of 15% CO2 / 85% N2 under ambient conditions.

This work is the fruit of grafting NH4 groups to the sulfonate sites on a porous polymer network that was previously published, which leads to a higher selectivity to CO2 over N2 and CH4 gases also present in the exhaust streams of coal-fired power plants. Further improvements in adsorption capacity, while reducing the temperature required to remove the captured gas, can eventually yield a cheaper, more environmentally friendly alternative for greenhouse gas sequestration.

Interested? Read the full communication in Energy and Environmental Science here:

Building multiple adsorption sites in porous polymer networks for carbon capture applications
Weigang Lu, Wolfgang M. Verdegaal, Jiamei Yu, Perla B. Balbuena, Hae-Kwon Jeong and Hong-Cai Zhou
DOI: 10.1039/C3EE42226G

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

N-doped Graphene Monolayer as Catalyst for Photoelectrochemical Hydrogen Production

Researchers have demonstrated the use of doped graphene to improve the photoelectrochemical production of hydrogen.

In a novel approach, a monolayer of graphene has been reported as an effective catalyst towards the hydrogen evolution reaction (HER). By depositing a single layer of graphene on a p-doped silicon photocathode, the overpotential required for the HER in the presence of light was shifted positively by 0.18 V vs. RHE. The catalytic activity was confirmed to be a result of the graphene layer by testing on a glassy carbon substrate, where a 50 mV shift in onset compared to glassy carbon baseline was discovered.

Overpotential reduction through catalyst layer modification on Si photocathode

This transparent catalyst monolayer was also shown to act as a passivation layer, preventing oxidation of the substrate while maintaining current density. This led to a more consistent onset potential when compared to the bare Si photocathode, which degraded over time quite substantially. Furthermore, by treating the graphene layer in nitrogen plasma, the added defects, as well as the nitrogen doping, led to even further improvements in catalytic activity towards HER.

As a proof of concept, platinum was added to the N-doped graphene monolayer, where a solar-to-hydrogen conversion efficiency of 3.05% was reported, which maintained activity over a range of pH. With further optimizations, carbon based catalysts can contend as a cost effective method for the clean production of hydrogen on a commercial scale.

Interested? Read the full communication in Energy and Environmental Science here:

N-doped monolayer graphene catalyst on silicon photocathode for hydrogen production
Uk Sim, Tae-Youl Yang, Joonhee Moon, Junghyun An, Jinyeon Hwang, Jung-Hye Seo, Jouhahn Lee, Kye Yeop Kim, Joohee Lee, Seungwu Han, Byung Hee Hong and Ki Tae Nam
Energy Environ. Sci., 2013, Paper
DOI: 10.1039/C3EE42106F

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)