Archive for February, 2014

HOT articles for February

Growth mechanism and photocatalytic activity of self-organized N-doped (BiO)2CO3 hierarchical nanosheet microspheres from bismuth citrate and urea
Fan Dong, Ting Xiong, Rui Wang, Yanjuan Sun and Yanke Jiang  
Dalton Trans., 2014, Advance Article
DOI: 10.1039/C3DT53383B

Graphical abstract

Free to access until 20th March 2014


A novel and high brightness AlN:Mn2+ red phosphor for field emission displays
Xiao-Jun Wang, Rong-Jun Xie, Benjamin Dierre, Takashi Takeda, Takayuki Suehiro, Naoto Hirosaki, Takashi Sekiguchi, Huili Li and Zhuo Sun  
Dalton Trans., 2014, Advance Article
DOI: 10.1039/C3DT53532K

Graphical abstract

Free to access until 20th March 2014


Assembly and core transformation properties of two tetrahedral clusters: [FeIII13P8W60O227(OH)15(H2O)2]30− and [FeIII13P8W60O224(OH)12(PO4)4]33−
Pedro I. Molina, Haralampos N. Miras, De-Liang Long and Leroy Cronin  
Dalton Trans., 2014, Advance Article
DOI: 10.1039/C3DT53382D

Graphical abstract

Free to access until 20th March 2014

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Tag-Team Luminescence Enlightens Biomolecular Analysis

How do you combine rare-earth metals, extremely specific energy transfers, and luminescent properties to investigate changes in enzymes? New methods often arise from unique confluences of existing knowledge. In their recent paper, the Natrajan group from the University of Manchester exploit known properties of easily-obtained chemical products to present a clever new biosensory technique .

UCP emission spectra

The unique aspect is the use of upconverting phosphors (UCPs) in combination with enzymes. UCPs are luminescent particles, often based on rare-earth metals, which can be excited by multiple photons absorbed in the near-infra-red region (750-1400 nm wavelengths). Post excitation, they emit a photon of light in the higher-energy visible spectrum, thus the energetic process is known as up-conversion. While enzymes have high specificities and sensitivities to substrates, UCP’s have the advantage of excitation in the near-infra-red region without autofluorescence. In combination, enzymes and UCPs provide several direct advantages over simple biosensory fluorescence measurements.

In the current paper, NaYF4:Yb:Tm was the UCP used to probe the redox properties of the enzyme pentaerythritol tetranitrate reductase (PETNR) and Forster Resonance Energy Transfer (FRET), involving energy transfer between two chromophores, was used to excite the UCP. In this case, transfer of energy from the absorbance band of the flavin mononucleotide core of the PETNR enzyme and the emission band of the UCP, which are very close in wavelength, allow FRET to occur. Since a second emission band in the near-IR region originates from this UCP, this was normalized so that the other band, varying with the enzyme concentration, could be measured against it. When the PETNR underwent a two-electron reduction, it negated its ability to undergo FRET, resulting in the loss of the emission band at 460 nm, rendering the solution colourless. The researchers demonstrated that this new technique can be used with either the full PETNR enzyme or the mononucleotide flavin core alone, indicating that this can be applied to a wider range of systems.

Find out more and download the article now:
Ratiometric detection of enzyme turnover and flavin reduction using rare-earth upconverting phosphors
Dalton Trans., 2014, DOI: 10.1039/C4DT00356J


Ian_Mallow Ian Mallov is currently a Ph.D. student in Professor Doug Stephan’s group at the University of Toronto. His research is focused on synthesizing new Lewis-acidic compounds active in Frustrated Lewis Pair chemistry. He grew up in Truro, Nova Scotia and graduated from Dalhousie University and the University of Ottawa, and worked in chemical analysis in industry for three years before returning to grad school.
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Dalton Transactions Lectures at the University of California, Berkeley 2014

The 2013 Dalton Transactions Lecture awardees delivered their presentations at UC Berkeley last month. Each awardee is provided with an honorarium and a commemorative plaque. 

Trevor Hayton Professor Trevor Hayton (UCSB) gave the annual Dalton Transactions Lecture, which is awarded to an exceptional young inorganic chemist in the Americas each year. Previous recipients are:

2012   Teri Odom (Northwestern University)
2011    Daniel Gamelin (U Washington)
2010    Paul Chirik (Princeton University)
2009    Francois Gabbai (Texas A & M University)
2008    Dan Mindiola (Indiana University)
2007    Geoff Coates (Cornell University)
2006    John Hartwig (University of Illinois at Urbana-Champaign)
2005    Kit Cummins (MIT)

Professor Hayton has rapidly established himself as a leader in synthetic inorganic chemistry, focusing on actinides and bioinorganic systems. His lecture focused on the synthesis and reactivity of actinide complexes with chalcogenide ligands. 

Professor Hayton received his B.Sc. in Chemistry from the University of British Columbia, whereupon he began his Ph.D. research, also at UBC, under the direction of Peter Legzdins. After graduating in 2003, he began a postdoctoral fellowship at Los Alamos National Laboratory before joining the faculty at University of California, Santa Barbara in 2003.

   
Phillip Power The inaugural Dalton Transactions Distinguished Lecture was given on February 7 by Professor Phil Power of UC Davis. Professor Power is a world-renowned expert in main group chemistry. His Dalton Transactions Lecture focused on the preparation and structure of low-coordinate main group compounds and their reactivity towards small molecules such as dihydrogen and ethene. 

Professor Power received his bachelor’s degree in chemistry from the University of Dublin, Ireland, and his doctorate from the University of Sussex; the latter under the supervision of Mike Lappert. He carried out postdoctoral research at Stanford University before joining the faculty at UC Davis in 1980. He was award the Royal Society of Chemistry Mond Medal in 2005 and elected Fellow of the Royal Society in the same year. 

 Congratulations to Professors Hayton and Power for their awards!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Call for papers: 2014 themed issues

DaltonTransCoverWe are delighted to announce that Dalton Transactions will be publishing a number of themed issues in 2014. We want you to submit your work. If your research fits within the following themed issue topics, read on…

New Expeditions in Polar Organometallic Chemistry – deadline 1st April 2014

Inorganic Chemistry for Renewable Energy Conversion and Storage  – deadline 1st May 2014

Spectroscopy of Inorganic Excited States – deadline 14th May 2014

 Details of the scope of each issue is below.

How to submit?
All types of manuscript—communications, full papers and Perspectives, will be considered for publication. The manuscript should be prepared according to our article guidelines and submitted via our online system.

All manuscripts will be subject to the normal refereeing procedure and inclusion in the themed issue will be at the discretion of the Guest Editors. Please indicate in your submission that you would like the manuscript to be considered for this themed issue.

Issue scopes:

New Expeditions in Polar Organometallic Chemistry
Guest edited by Professor Eva Hevia (University of Strathclyde), this issue will focus on both the synthesis and characterisation of polar organometallic reagents and their application in organic synthesis, catalysis, supramolecular chemistry and materials science.

Inorganic Chemistry for Renewable Energy Conversion and Storage
Guest edited by Professor Lars Kloo (KTH), this issue will focus on all aspects of inorganic/organometallic materials and coordination chemistry of relevance for the conversion and storage of renewable energy. Contributions may include solar cells, solar fuels, fuel cells, batteries, or materials for energy storage; however, this list is by no means exhaustive – all subject areas within the title theme will be welcome!

Spectroscopy of Inorganic Excited States
Guest edited by Dr Julia Weinstein (Universityof Sheffield), this issue will focus on the state-of-the art in spectroscopic interrogation of inorganic excited states which apply the latest advances in detection technology.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)