Author Archive

DNP SENS – a fast method to probe surface functionality

Table of contents imageThe development of new experimental methods to probe surface functionality is crucial to the understanding of functional materials. For the typically low concentrations of surface functional groups, traditional nuclear magnetic resonance (NMR) spectroscopy lacks the sensitivity to provide chemical information quickly.

In dynamic nuclear polarisation surface enhanced NMR spectroscopy (DNP SENS), a porous or particulate sample is wetted with a radical solution. The large polarisation of the radicals’ unpaired electrons is then transferred to surrounding nuclear spins, with a typical signal enhancement of between 10 and 100. This can decrease experimental time dramatically, whilst probing specifically the surface functionality.

In their recent communication in PCCP, the research groups of Professor Lyndon Emsley and Professor Christophe Copéret collaborated to characterise the organic part of a periodic mesoporous organosilicate (PMO). Structural changes following functionalisation with an organoiridium compound were studied using DNP SENS. Remarkably, 15N (0.37% natural abundance) DNP SENS spectra revealed the appearance of a new chemical environment following functionalisation, corresponding to nitrogen atoms (in the PMO) bonded to Iridium (III). This key piece of evidence allowed the authors to elucidate a layered structure in which only the surface layers were available for functionalisation.

Whilst the 15N spectra would have taken weeks to acquire using conventional NMR methods, DNP SENS experiments took only a matter of hours, highlighting the power of this fascinating method.

Full details can be found in the PCCP communication:

Molecular-level characterization of the structure and the surface chemistry of periodic mesoporous organosilicates using DNP-surface enhanced NMR spectroscopy
Wolfram R. Grüning, Aaron J. Rossini, Alexandre Zagdoun, David Gajan, Anne Lesage, Lyndon Emsley and Christophe Copéret
DOI: 10.1039/C3CP00026E

By Alexander Forse

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Water of life

molecular image plus 4 graphsMore than 50 % of our bodies are water. Plain and simple, we are more water than anything else. Following that statement it must be said that none of the water in our body is simply water. Excluding the content of your bladder, none of the water in your body is water as you have come to know it from your glass, rain, your local river and the oceans. Your body water surrounds cell membranes, microtubule, proteins, sugars, bones; all the smaller and larger biomolecules that make up our bodies. Not to mention the specific concentrations of salts and inorganic molecules that are required to run our bodies. We are beginning to understand the structure of water itself, and when water solvates simple ions. The work of Takis and co-workers increases the stakes and opens our mind to the specific solvations of small protein fragments.

The research from the groups of Troganis and Melissas at the University of Ioannina is focused on simple dipeptides, and exploits molecular dynamic simulations, density functional theory based calculations and advanced nuclear magnetic resonance spectroscopy. This combination allows them to probe the solvation of the small peptide experimentally, and rationalize the findings by the theoretical approach. Specifically the distances between selected carbon atoms in the peptide structure and water molecules can be measured. The challenge in this approach is the continuous and rapid exchange of the water molecules.

To me, the most readily accessible data is the plots showing the probability of finding water oxygen and hydrogen atoms at a specific distance to selected groups in the peptide structure. Here, extracted from MD simulations. When experimental data can yield similar results, we will be able to start directly investigating how more than half of our bodies are made up.

The excellent work on the solvation of dipeptides is published in the PCCP paper titled:

Probing micro-solvation in “numbers”: the case of neutral dipeptides in water
Panteleimon G. Takis, Konstantinos D. Papavasileiou, Loukas D. Peristeras, Vasilios S. Melissas and Anastassios N. Troganis
Phys. Chem. Chem. Phys., 2013, 15, 7354-7362
DOI: 10.1039/C3CP44606A

by Thomas Just Sørensen

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Playing with liquid crystalline water balloons

Table of contents imageSometimes you just have to sit back, read, and enjoy the ride. This is exactly the case with the work of Kirsten Harth and Ralf Stannarius from the Institute of Experimental Physics at the Otto von Guericke University Magdeburg. The have investigated the interface tension between soapy water and a smectic liquid crystal.

Apparently, thin films of smectic—and only smectic—liquid crystals readily form in water, where they can form bubbles. In an ingenious experimental set-up Harth and Stannarius can measure the surface tension by letting a single air bubble put the smectic film bubble under tension. Amazing as it sounds, it is a viable procedure and the interface tension can be accurately determined.

The generic appeal of this study makes it one of the more enjoyable reads I have had in a while. The images were just so interesting that my curiosity forced me to download and read the paper.

If you are equally enticed, the paper is published in PCCP:

Measurement of the interface tension of smectic membranes in water
Kirsten Harth and Ralf Stannarius
Phys. Chem. Chem. Phys., 2013, 15, 7204-7209
DOI: 10.1039/C3CP44055A

by Thomas Just Sørensen

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Computational chemistry: predicting or understanding measurements?

Table of contents imageIn my understanding, science is the search for answers. The validity of the research is then defined by the nature of the question.

Computational chemistry is a two-headed scientist, where one head is constantly trying to find cost-effective methods for screening molecular interactions, lock-and-key matches of drug candidates etc. While the other head is busy creating a theoretical model able to emulate nature as close as possible. Either head is plagued by the need to understand nature and benchmark against experimental data. The computational results must constantly be contrasted to experiments, as not to lose the contact with reality and be caught in the virtual world. This is highlighted in the excellent report by Vöhringer and Kirchner on the computing of vibrational spectra.

Martin Thomas and co-workers makes a thorough review of the field of calculating vibrational spectra, followed by an easily approached walk-through of the theory they use when generating vibrational spectra from MD simulations. Reading the paper, I must admit I gained high expectations as to the results. I have been away from the field a couple of years. So instead of the being impressed by the results, I was slightly disappointed, which is completely unfair. Not only does the work move from the static system and the harmonic approximation, it also takes us from the gas phase to solvated molecules. Well, the experimental data is not matched, but we are getting closer.

by Dr Thomas Just Sørensen

Read more details of this fascinating article which is part of the themed collection “Theory meets spectroscopy“:

Computing vibrational spectra from ab initio molecular dynamics

Martin Thomas, Martin Brehm, Reinhold Fligg, Peter Vöhringer and Barbara Kirchner
DOI: 10.1039/C3CP44302G

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Bursaries for travel to IUPAC 2013 congress – apply this week!

The RSC are delighted to be able to provide £400 bursaries for ten UK-based PhD student and early career researcher members to participate in the 44th IUPAC World Chemistry Congress in Istanbul, Turkey, between the 11th and 16th August 2013.

The main topic of this year’s congress is “Clean Energy Through Chemistry”. Speakers include Daniel Nocera from Harvard and Martin Quack from ETH Zurich. For more details, please see http://www.iupac2013.org/.

To apply for this grant, please complete the application form (my.rsc.org/content/images/Science/IUPAC-application.pdf) and include a copy of your CV by noon on Friday the 26th April. Applications should be sent to science@rsc.org. Please note that the registration deadline for IUPAC 2013 is the 30th April.  Members wishing to apply for an RSC grant will also need to register for the congress via the IUPAC 2013 website (http://www.iupac2013.org/abstract_submissions.asp).

If you have any questions, please don’t hesitate to email science@rsc.org.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

The reach of surface plasmons

Table of contents imageTechnology based on surface plasmon resonances and localised surface plasmon resonances is surging. And so is the research into SPR effects, see for instance the recent PCCP themed collection: Plasmonics and spectroscopy.

In this paper from University of Exeter, Thomas Read and co-workers determine the propagation of plasmon fields in biological media. They make as stack immunoglobulin molecules and determine the critical parameter (β for us who grew up with reading electron transfer literature) for a plasmonic gold surface and a gold nanoparticle. The numbers are 17.5 nm and 90 nm, respectively. As the number goes in the denominator in an exponential, this is a significant difference in the reach of the plasmon fields.

I find it enticing that, in a field dominated by physicists, a chemical approach using biomolecules is the experimentalists answer to measure the extent of the plasmon fields. By building a tower of molecules it is possible to see the step wise change in the read-out from the SPR platform. For a person outside the field, the paper contain an advert for the home-build LSPR platform the authors use in their experiments. The data from this set-up completely outshines the data from the commercial SPR platform.

If your curiosity has been aroused, the full paper is published in PCCP under the title:

Measurement of the localised plasmon penetration depth for gold nanoparticles using a non-invasive bio-stacking method
Thomas Read, Rouslan V. Olkhov and Andrew M. Shaw
DOI: 10.1039/C3CP50758K

by Dr Thomas Just Sørensen

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Liquid-crystalline glass boxes

In the modern world of fast paced research and a stronger focus on when there is enough data for a paper, rather than when we are sure we know the subject under study, it is a pleasure to read the paper “Properties and self-assembled packing morphology of long alkyl-chained substituted polyhedral oligomeric silsesquioxanes (POSS) cages” from the lab of Professor Alan R. Bassindale. In this paper every rock has been turned and you can, either by scrutinizing the data, or by reading the paper, get introduced to polyhedral oligomeric  silsesquioxane cages and the difference in packing between cages with a spacer group and without.

Ellen L. Heeley and co-workers take us through the investigation of the phases of two POSS cages, one with long alkyl chains directly affixes to the corners of the cages, and one where a flexible liner is introduced between the cage and the alkyl chain. A quite drastic effect in the packing of the alkyl chains in the molecular materials is found. There is no room in the cages with directly attached alkyl chains for the molecules to form an interdigitated alkyl layer in the structure. In the system where there is able room to interdigitate, a lamellar-like structure is obtained, with segregated layers of alkyl-grease and layers of glass-boxes.

To see the data first hand go to:

Properties and self-assembled packing morphology of long alkyl-chained substituted polyhedral oligomeric silsesquioxanes (POSS) cages
Ellen L. Heeley, Darren J. Hughes, Youssef El Aziz, Ian Williamson, Peter G. Taylor and Alan R. Bassindale
Phys. Chem. Chem. Phys.
, 2013, 15, 5518-5529.
DOI:
10.1039/C3CP44356F

by Dr Thomas Just Sørensen

Table of contents image

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

“The free energy landscape: from folding to cellular function”

PCCP themed issue: The free energy landscape: from folding to cellular function

Guest Editors: Ruth Nussinov (National Cancer Institute, SAIC-Frederick, and Tel Aviv University) and Peter Wolynes (Rice University)

Submission Deadline: 7th October 2013

PCCP is delighted to announce a high-profile themed issue ‘The free energy landscape: from folding to cellular function’.  The themed issue will be published in Physical Chemistry Chemical Physics (PCCP) in 2014. It will receive great exposure, and get significant promotion.

In 1991, Frauenfelder, Sligar and Wolynes proposed the free energy landscape description for the ensemble of folded protein states.  The free energy landscape’s funnel-like shape indicated that folding is driven by the hydrophobic effect; that proteins can populate a large number of conformational substates; and that strong energetic conflicts are minimized in the most populated, native states, satisfying the principle of minimal frustration.

Eight years later, Nussinov and her colleagues suggested that this concept can help explain protein function, including functional binding events, aggregation, catalysis, allostery, and signalling across the cell, via ‘conformational selection and population shift’.  Population shift emphasized that all conformational substates pre-exist, and that evolution has exploited them for function. Population shift is now broadly recognized as the origin of allostery, and thus of signaling across multimolecular complexes; pathways and the entire cellular network. The propagation pathways may help explain the effects of allosteric, gain-of-function mutations.

This themed issue aims to underscore the linkage between fundamental physicochemical principles to the cellular network, regulation, function and misfunction in disease.

The issue will broadly cover research relating the free energy landscape to function including:

  • Protein and RNA folding, allostery, the shift in the equilibrium between the inactive and active protein states as governed by the cellular environment, and catalysis
  • How the free energy concept can account for signalling, from the extracellular environment, through the cytoplasm to turn genes ON and OFF, and for network rewiring
  • How the landscape description can help in understanding drug resistant mutations and  in allosteric drug discovery

Manuscripts can be submitted in any reasonable format using our online submissions service. Submissions should be high quality manuscripts and will be subject to rigorous peer review.

Please indicate upon submission that your manuscript is intended for this themed issue.

The deadline for submissions to the themed issue is 7th October 2013, although submissions before this date are of course welcomed.

Follow us on twitter

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Speeding up your NMR data acquisition

There has been an increase in the popularity and practical application of hyperpolarization NMR/MRI.  One way to achieve high levels of nuclear spin polarization is based on the notion that as the temperature is reduced (characterized by the spin-lattice relaxation time, T1), the equilibrium nuclear polarization will increase, according to the Boltzmann distribution. The main problem with this approach is the length of time it may take to approach thermal equilibrium at low temperatures, since nuclear relaxation times can become very long.

Now, scientists in the UK show that DTPA(diethylene triamine pentacetic acid)-chelated lanthanides can be used as spin-lattice relaxation T1-shortening agents of nuclear spins, to expedite NMR data. Differential effects are seen with different lanthanides, with holmium and dysprosium causing the most relaxation, while gadolinium is ineffective at temperatures of 20 K and below.

Reducing the T1 values of the relevant nuclei increases the rate at which data can be acquired, and this new method is hoped to have applications in routine chemical analysis, as well as in selected tissue metabolism studies that require only coarse spatial localization.

Read the full details of this exciting development:

Achievement of high nuclear spin polarization using lanthanides as low-temperature NMR relaxation agents
David T. Peat, Anthony J. Horsewill, Walter Kockenberger, Angel J. Perez Linde, David G. Gadian and John Robert Owers-Bradley
DOI: 10.1039/C3CP00103B

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Surprising insights on metallic clusters

Table of contents imageBetween bulk metals and their individual atoms lies the murky world of metallic clusters. These often have unique properties, and understanding them is as challenging as it is interesting. Many properties are a direct function of cluster size, and provide important insights into the progression from individual atoms to bulk solids. It is therefore important to ascertain the exact size at which a particle ceases to be classified as a cluster and becomes a bulk solid. This moment can either be measured experimentally or calculated using a theoretical model.

Aluminium bridges the gap between monovalent and multivalent clusters, as it is monovalent as a single atom, but becomes trivalent with hybridized orbitals at larger cluster sizes. The exact cluster size at which this hybridisation occurs is still the matter of intense debate, with little coherence amongst the results of a large number of studies, both experimental and theoretical.

Melko and Castleman attempt to resolve this problem by conducting both a theoretical study and an experimental study using the angular distribution information obtained from photoelectron imaging. They then developed a calibration curve that allowed them to quantitatively compare their results, which were rather surprising. They suggest that the orbital hybridisation that indicates bulk behaviour begins to appear at cluster sizes as small as Al3, which is considerably smaller than previously thought. The extent of the hybridisation then appears to oscillate as successive atoms are added to the cluster up to at least Al6, suggesting the existence of a transition period between the monovalent and trivalent states, rather than a discrete threshold.

by Victoria Wilton

Read the full details of this fascinating PCCP article:

Photoelectron imaging of small aluminum clusters: quantifying s–p hybridization
Joshua J. Melko and A. W. Castleman
DOI: 10.1039/C3CP43158D

If you enjoyed this paper you may also be interested in the Nanoscale themed issue on Metallic clusters – please do take a look.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)