Microchannels and chambers using one step fabrication technique

Vivek Kamat, KM Paknikar and Dhananjay Bodas*
Centre for Nanobioscience, Agharkar Research Institute, GG Agarkar road, Pune 411 004
E-mail: dsbodas[at]aripune.org; Tel: +91-20-25653680      

Why is this useful?       


At present many techniques are employed for fabricating channels and chambers, most of them using photolithography and soft lithography [1]. The fabrication of a circular channel and chamber in a monolithic design is challenging, which can be achieved using copper wires of varying diameters (from 20 µm). This simplistic process also eliminates usage of expensive equipment, can be performed in a normal laboratory environment (doesn’t require clean room facilities) and high fidelity structures could be obtained.      

Fabrication of chambers can be achieved in a simple, fast and novel approach by utilizing agarose gel. Agarose gel is an important component used in molecular biology experiments. Agarose powder is mixed with water and is boiled, after cooling the liquid polymerizes to form a gel. This gel can be utilized to mold the desired chamber (variable size and shape) which can be utilized for making chambers on chip.      

What do I need?      


  1. PDMS (1 part curing agent and 10 part of base)
  2. Agarose (1% in distilled water)
  3. Copper wires of desired diameter.
  4. Square box 5 x 5cm which serves as chip caster.
  5. Used syringes (φ 4 mm in the present case)  

What do I do?      


  1. PDMS is prepared by mixing 1:10 proportion (curing agent to base) and degassing for 30 min in a vacuum dessicator [2, 3].
  2. 1% agarose powder is mixed in distilled water and boiled in microwave for 1 min until a clear solution is obtained. Decreasing the amount of agarose will result in softer gel
  3. Cut the tip off of a 4 mm diameter 1 ml syringe. Pour in the agarose solution.
  4. Allow the solution to cool inside the syringe and push the plunger to obtain gel in cylindrical form (see Fig 1). This cylinder so obtained can be cut into desired heights as per design requirement. In our case we have used 5 mm high cylinder for fabrication of the chamber (see Fig 2).
  5. Micro dimensional copper wire is inserted through the cylinder (see Fig 3) and the whole assembly is placed in a box for molding PDMS (see Fig4) and cured at 70°C for 3 h in a convection oven.
  6. After curing, place the chip in IPA for 5 min for removing the copper wire. Agarose gel can be removed by placing the chip in boiling water for 10 min. or by passing hot water using the microchannel. Repeat the process until agarose is washed completely without any traces.
  7. Thus, what we have achieved is a microchannel and chamber connected together fabricated in a single step (see Figs 5 and 6). This monolith design could be extended for multiple applications such as mixing, as a reaction chamber for carrying nanoparticle synthesis, cell lysis, DNA amplification etc. [3]

  

Fig1: After cooling push the plunger to get a cylindrical agarose gel

Fig 1: After cooling push the plunger to get a cylindrical agarose gel

Fig2: Cut desired height to get small cylindrical gels

Fig 2: Cut desired height to get small cylindrical gels

Fig3: Insert copper wire of desired diameter through the gel

Fig 3: Insert copper wire of desired diameter through the gel

Fig4: Place in a caster box, add PDMS and allow for curing 70°C for 3 h

Fig 4: Place in a caster box, add PDMS and allow for curing 70°C for 3 h

Fig5: Top view of the fabricated chip

Fig 5: Top view of the fabricated chip

Fig6: Fluid inside a monolithically fabricated microchannel and a chamber

Fig 6: Fluid inside a monolithically fabricated microchannel and a chamber

References  


1. SKY. Tang and GM. Whitesides, Basic microfluidic and soft lithographic techniques in Optofluidics: Fundamentals, Devices and Applications, McGraw-Hill Professional, 2010.
2. J Friend and L Yeo, Biomicrofluidics, 2010, 4(2), 26502. DOI 10.1063/1.3259624.
3. S Agrawal, A Morarka, D Bodas and KM Paknikar, Appl Biochem Biotechnol. 2012, 167(6), 1668-77. DOI: 10.1007/s12010-012-9597-8.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)