Nanocomposite lithium ion batteries

Cheap and effective storage of renewable energy is a key challenge for consumers in the future. Lithium ion batteries (LIBs) are one class of materials that meet the important requirements of high energy density, low cost, good power capacity and efficient cycling.

Recent research on LIB materials has focused on maximising their favourable properties to bring them closer to commerical use.

A new paper by Jun Liu and co-workers (Central South University, Changsha, China) describes the preparation and testing of a new anode material based on MoO3 and graphene oxide (GO). The former material is naturally abundant, has good chemical stability and a high storage capability but also exhibits poor conductivity and lithium ion diffusion. GO has good conductivity, a large surface area and is highly stable, making it an attractive material for composite material formation.  

The authors prepared the new material by first synthesising GO and α-MoO3 nanoribbons before modifying the surface of the latter to produce a positive charge. This allowed the MoO3 material to assemble onto the GO.  They then applied heat to form the product, α-MoO3@GNS (GNS refers to graphene nanosheet), and fabricated the material to form an anode.

 graphene encapsulated molybdenum trioxide for LIBs

These robust nanocomposites exhibit greatly enhanced Li transport efficiency compared to other MoO3-based materials, as well as high electrical conductivity and good cycling efficiency.

The authors concluded that the two components work synergistically to produce the observed properties and suggested the composite as a potential anode material for high performance LIBs.

 To find out more, read the full article:

Graphene nanosheets encapsulated α-MoO3 nanoribbons with ultrahigh lithium ion storage properties
Pei-Jie Lu, Ming Lei and Jun Liu
CrystEngComm, 2014, DOI: 10.1039/C4CE00252K


Gwenda KydGwenda Kyd has a PhD in metallocarborane chemistry from the University of Edinburgh. Other research work includes the spectroscopic study of the structure of glasses and organometallic electron-transfer reactions and the preparation of new inorganic phosphors.  She has recently published a book on chemicals from plants.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)