Archive for the ‘Physical’ Category

How do Anions Fight Indoor Organic Contaminants?

Indoor air quality is critical to public health. Chronic exposure to indoor organic contaminants (IOCs), including aldehydes and benzene homologues, substantially increases the risk of having respiratory diseases. In recent years, negative air ions (NAIs) have emerged as promising materials to decompose IOCs. NAIs are negatively charged ions generated via ionizing air. However, the limited understanding of the decomposition reaction mechanisms hinders the safety evaluation and wide adoption of NAI-cleaning.

A group of Chinese researchers led by Jin-Ming Lin of Tsinghua University recently demonstrated in ChemComm a powerful tool to unveil the reaction mechanisms. They built a system integrated with an NAI generator, an IOC sprayer and a mass spectrometer (Figure 1). NAIs containing mostly CO3 were produced by the ionization of air. These anions then mixed and reacted with the sprayer-delivered IOCs in front of the mass spectrometer inlet. All species generated during the reactions were directly brought into the mass spectrometer by inert N2 for characterization.

Figure 1. The experimental set-up of the integrated system.

This device revealed real-time reaction kinetics by identifying the reaction intermediates. The mass spectrum of a common IOC, formaldehyde, when reacted with CO3 is presented in Figure 2a. Two pronounced peaks with mass to charge ratios (m/z) of 45.10 and 60.10 were assigned to HCOO and CO3, respectively. Additionally, the 45.10 peak was only detected when formaldehyde was present (Figure 2b). On the basis of these observations, the authors concluded that the major pathway of formaldehyde degradation by CO3was the reaction between CO3 and the α-H atom of the aldehyde group. With identical instrumentation, the authors also proposed how the reactions between CO3 and benzene homologues or esters may proceed.

Figure 2. (a) The mass spectrum of reaction intermediates between CO3 and 10 ppm formaldehyde. (b) The change of peak intensities of m/z = 60.10 and 45.10 peaks with the operation time. Formaldehyde was present during 7.0-14.0 min.

The results obtained by this study could greatly deepen the understanding of NAI-based chemistry. It could also be useful to investigate kinetics of a broad range of other chemical reactions involving charged reactants.

 

To find out more please read:

Real-Time Characterization of Negative Air Ion-Induced Decomposition of Indoor Organic Contaminants by Mass Spectrometry

Ling Lin, Yu Li, Mashooq Khan, Jiashu Sun and Jin-Ming Li

Chem. Commun., 2018, DOI: 10.1039/c8cc05795h

 

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Chemistry from University of California, Santa Cruz in the United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is a blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

The CO2-Capturing Mechanism of Quaternary Nitrogen-Containing Polymers Revealed Experimentally

A group of scientists from Washington University at St. Louis, USA have disclosed experimentally how CO2 is captured by polymers with quaternary nitrogen cations. Using solid-state nuclear magnetic resonance (NMR), the authors established that CO2 molecules were absorbed as bicarbonate anions (HCO3).

The increasing amount of CO2 has posed a number of concerning environmental issues such as climate change, rising sea level and ocean acidification. Capturing CO2 from the atmosphere is an effective way to lower the CO2 concentration. Recently, a family of polymer absorbents containing quaternary nitrogen functional groups, termed humidity-swing polymers, have been identified as promising absorbents to absorb CO2 directly from air. However, the limited understanding of the chemical mechanism related to their CO2-capturing capability hindered the development of these promising absorbents.

In ChemComm, Yang et al. used solid-state 13C NMR to explore how CO2 molecules were captured and released. Figure 1a presents the NMR spectra of a humidity-swing polymer absorbent itself (top), upon contacting with CO2 (middle) and after releasing CO2 (bottom). The most striking feature is the appearance of an additional sharp peak at a chemical shift of 161 ppm in the middle spectrum, which did not show up in the other two spectra. The authors further studied the shape evolution of the additional peak, with respect to temperature, and concluded that the peak was due to HCO3 anions. Additionally, the authors also identified the presence of hydroxide anions in the absorbent after CO2 was released.

Figure 1. (a) The solid-state 13C NMR spectra of the humidity-swing polymeric absorbent (structure shown in the inset of the middle spectrum) itself (top), upon contacting with CO2 (middle) and after releasing CO2 (bottom). (b) The proposed pathways of how CO2 molecules interact with the quaternary-N anions of the absorbent.

The researchers then proposed the CO2 adsorption-desorption mechanism (illustrated in Figure 1b) based on the experimental results. The storage and release of CO2 depend on the humidity level of the surroundings: When the humidity is low, the polymer absorbs CO2 and forms HCO3 anions; the negative charge of HCO3 is counter-balanced by the neighboring quaternary N cations. When the humidity is increased, HCO3 anions combine with water and decompose to CO2 and hydroxide anions. This proposed pathway does not involve CO32- anions, which differs from the previously-reported mechanisms derived from theoretical simulations.

The published results represent the first set of experimental evidence elucidating how CO2 molecules interact with humidity-swing polymeric absorbents. The acquired mechanistic insight could provide valuable guidelines for the design of CO2 absorbents with ultrahigh absorption capacity.

 

To find out more please read:

Humidity-Swing Mechanism for CO2 Capture from Ambient Air
Hao Yang, Manmilan Singh and Jacob Schaefer
Chem. Commun., 2018, DOI: 10.1039/c8cc02109k

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Physical Chemistry from University of California, Santa Cruz in United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is a blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Ruthenium Currency for a Hydrogen Fuel Economy

A group of researchers at the Chinese Academy of Sciences and Southwest University want us to kick the fossil fuels habit. Their research comes to us from China, a country using roughly one quarter of the world’s yearly energy consumption, and where the finite nature of fossil fuels is a very real threat to energy supply security. Leading in energy use, China also leads the world in electricity production from renewable sources and investment in clean energy projects.

Hydrogen is considered a viable alternative to fossil fuels as it is energy rich, more so than petrol or ethanol at 39 kWh/kg (petrol: 13 kWh/kg, ethanol: 8.2 kWh/kg), and upon combustion emits only water vapour. However, hydrogen is often obtained from fossil fuels, and it will only be a practical option for the world’s future energy needs if it can be produced from a renewable source.

Preparation of the Ru2P/reduced graphene oxide electrocatalyst for the hydrogen evolution reaction

Preparation of the Ru2P/reduced graphene oxide catalyst

To this end, water splitting offers a solution. In a water electrolysis cell, hydrogen is produced at the cathode via the hydrogen evolution reaction (HER, 2H+ + 2e –> H2), and molecular oxygen is produced at the anode (2H2O –> O2 + 4H+ + 4e). It is ideal in theory, but high energy efficiencies are required to make water splitting viable, and this relies on the development of catalytic electrodes to minimize overpotentials required to drive the reaction. Currently, state of the art HER electrocatalysts use platinum, which is expensive and rare. Furthermore, platinum catalysts are most efficient in an acidic electrolyte and proceed 2-3 times slower in alkaline solutions. On the other hand, the best oxygen evolution catalysts perform better in alkaline environments. Using an alkaline electrolyte has overall advantages as it is less corrosive, thus increasing the stability and lifetime of the electrolytic cell.

The authors have developed a HER catalyst, using ruthenium, with overpotentials and current densities superior to Pt/C in both alkaline and acidic conditions.

DFT calculation to probe the hydrogen adsorption energies on the active catalytic surface of the Ru2P on reduced graphene oxide catalyst.

DFT calculation to probe the hydrogen adsorption energies on the active catalytic surface of the Ru2P catalyst. a) and b) front and side views of the calculated Ru2P/reduced graphene oxide surface. c) free energy diagram for the HER with different catalysts.

The electrocatalyst is comprised of small, uniform Ru2P nanoparticles (~2-4 nm) evenly distributed on reduced graphene oxide sheets. The activity of the prepared catalyst (1.0 mg cm-2) for the HER was measured in an acidic medium (0.5 M H2SO4) and the overpotential to achieve a current density of -10 mA cm-2 was -22 mV, superior to Pt/C (-27 mV). In an alkaline environment (1.0 M KOH) catalyst performance was enhanced, with an overpotential of -13 mV (29 mV lower than Pt/C). High Faradaic efficiencies of more than 98% were measured in both acidic and alkaline solutions. Additionally, analysis was undertaken to further understand how the structure and composition of the catalyst influences its activity. Double layer capacitance measurements gave clues about the catalyst surface, while theoretical DFT calculations were used to study H-adsorption energies.

There is no way to avoid the reality that ruthenium is also a rare and costly metal, and for this reason may not hold the key to solving our energy woes. However, of real value are the insights gained from probing the structure function relationship of this highly active catalyst, which may guide the synthesis of rationally-designed catalysts using inexpensive and abundant materials.

To find out more please read:

Ultrasmall Ru2P nanoparticles on graphene: a highly efficient hydrogen evolution reaction electrocatalyst in both acidic and alkaline media

Tingting Liu, Shuo Wang, Qiuju Zhang, Liang Chen, Weihua Hu, Chang Ming Li.
Chem. Commun., 2018, 54, 3343-3346
DOI: 10.1039/c8cc01166d

About the author:

Zoë Hearne is a PhD candidate in chemistry at McGill University in Montréal, Canada, under the supervision of Professor Chao-Jun Li. She hails from Canberra, Australia, where she completed her undergraduate degree. Her current research focuses on transition metal catalysis to effect novel transformations, and out of the lab she is an enthusiastic chemistry tutor and science communicator.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Buckyball’s Hydrogen Spillover Effect at Ambient Temperature Observed Experimentally for the First Time

A group of scientists from Tohoku University, Japan experimentally demonstrated the hydrogen spillover effect of buckyball (a.k.a. fullerene or C60). They achieved this breakthrough using mass spectroscopy, and their findings were published recently in Chem. Commun.

Certain transition metal nanoparticles (e.g. Ru, Pt and Ni) can capture hydrogen molecules. The capture process generally involves three sequential steps. Firstly, hydrogen molecules split into hydrogen atoms on the metal surface. Secondly, the yielded hydrogen atoms migrate on the surface towards substrates under the metal nanoparticles and, finally, these atoms fix onto the substrates. The second step is termed the “spillover effect” (Figure 1a). Previous studies predicted that curved graphene sheets could enhance the hydrogen spillover effect at ambient temperatures, but solid experimental evidence has remained inadequate.

To gather evidence for this prediction, Nishihara et al. studied the material buckyball, a spherical carbon nanosphere that represents an extremely curved graphene sheet. The researchers selected ketjenblack (KB), a type of porous carbon sheet, as the substrate, and deposited Pt nanoparticles (1-3 nm in diameter) and buckyball molecules onto it (Figure 1b). They found that the Pt and buckyball-decorated KB stored a higher amount of hydrogen compared to the Pt-loaded KB. This observation indirectly confirmed the previous prediction, as hydrogen storage capacity may be improved by enhancing the spillover effect.

Figure 1. (a) A schematic illustration showing how a hydrogen molecule is split on Pt surface [process (1)] followed by the spillover effect [processes (2) and (2′)]. (b) A schematic illustration of the structure of Pt and buckyball-decorated KB. The inset panel displays two forms of hydrogen bound to the composite: the physically adsorbed di-hydrogen molecules, and the spillover hydrogen atoms anchored on the KB substrate and buckyballs.

 

The authors then sought time-of-flight mass spectroscopy to obtain more evidence. This spectroscopic technique is capable of identifying molecules with different mass to charge ratios (m/z). As shown in Figure 2, after treating the buckyball and Pt-loaded KB with deuterium molecules (D2), the spectrum (red) exhibited two additional peaks with m/z of ~723.5 and ~724.5 (highlighted by arrows in the figure) compared to those of the buckyball reference (black) and the buckyball and Pt-loaded KB prior to D2 dosage (blue). The authors ascribed these two new peaks to single D atom-adsorbed buckyballs with different amounts of carbon isotopes (12C and 13C). The presence of the two new peaks clearly showed that buckyballs could host hydrogen atoms to enhance the spillover effect. In addition, upon exposing the D-containing buckballs to air, both of the newly-merged peaks disappeared, suggesting that D atom adsorption was reversible.

Figure 2. The time-of-flight mass spectroscopy spectra of buckyball (black), Pt and buckyball-decorated KB before (blue) and after (red) exposure to D2, and after exposure to air (green). Pictures on the right show the molecular structure of a buckyball molecule and two deuterium-incorporated buckyball molecules (with different number of 13C isotope). Deuterium is used to avoid the interference from the 13C isotope.

This work could serve as a reference for future studies of the spillover effect induced by buckyballs interacting with other metal nanoparticles. The increasing availability of in-depth fundamental insight could refine our understanding of ambient-temperature hydrogen storage.

To find out more please read:

Enhanced Hydrogen Spillover to Fullerene at Ambient Temperature

Hirotomo Nishihara, Tomoya Simura and Takashi Kyotani

Chem. Commun. 2018, DOI: 10.1039/c8cc00265g

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Physical Chemistry from University of California, Santa Cruz in United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is a blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Anchoring Arynes on Graphene with Microwave but No Solvents

Recently in ChemComm, an international team from Italy and Spain reported a non-conventional way to anchor arynes onto graphene surface using microwave. Their developed method is fast, efficient, mild and solvent-free.

Attaching functional groups onto graphene surface, i.e. functionalization, allows the physical and chemical properties of graphene to be fine-tuned, such as electrical conductivity and solubility. Conventional solvent-based functionalization strategies usually involve time-consuming reactions and tedious purification steps. The poor suspension stability of graphene in solvents, particularly in polar organic solvents, greatly hinders the overall functionalization efficiency. Therefore, establishing easy and solvent-free functionalization protocols for graphene is highly needed.

M. Prato, A. Criado and coworkers made a breakthrough in addressing this challenge by developing a microwave-assisted functionalization method. Their method to functionalize graphene consists of cycloaddition reactions between few-layer graphene (FLG) and arynes (Figure 1). These reactions proceed by mixing the dry powder of FLG and arylene anhydrides, the precursors of arynes, followed by rapid heating under microwave irradiation. The whole process is solvent-free and occurs within half a minute. It is also applicable to a variety of arynes (Figure 2).

Figure 1. The schematic illustration of the microwave-assisted functionalization of graphene with arynes. This process can be carried out within half a minute and is solvent-free.

Figure 2. A variety of arynes capable of being anchored on graphene surface. 1~6 represent the arylene anhydrides and f-G(7)~f-G(12) are corresponding arynes attached onto graphene.

The most unique feature of the demonstrated method is the dual role of FLG. In addition to being one of the reactants, FLG is capable of absorbing microwave energy, and enables its surface to rapidly reach high temperatures that significantly accelerate the cycloaddition reactions.

This microwave-assisted functionalization method shows great promise as a stepping stone for the fast and efficient modulation of graphene surface and subsequently, the performance of graphene-based electronics.

 

To find out more please read:

Microwave-Induced Covalent Functionalization of Few-Layer Graphene with Arynes Under Solvent-Free Conditions

V. Sulleiro, S. Quiroga, D. Peña, D. Pérez, E. Guitián, A. Criado and M. Prato

Chem. Commun. 2018, DOI: 10.1039/C7CC08676H

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Physical Chemistry from University of California, Santa Cruz in United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is an online blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Single-Crystalline NiFe-Hydroxide Nanosheets for Catalyzing Oxygen Evolution

A group of scientists led by Prof. Shizhang Qiao has synthesized an oxygen evolution reaction (OER) catalyst combining the merit of low cost, excellent catalytic activity and long lifetime. This OER catalyst is composed of single-crystalline NiFe-hydroxide nanoflakes directly grown on nickel foams. The work has been published recently in ChemComm.

OER, the reaction of producing oxygen gas from water, is an indispensable component of electricity-generation devices using sustainable energy (e.g. fuel cells and photoelectrochemical water splitting cells). OER is usually the bottleneck limiting the overall energy conversion efficiency due to its sluggish kinetics and complex reaction pathways. As such, OER catalysts are needed to accelerate the OER reaction rate. Among the various OER catalysts, noble metal oxides stand out owing to their ultrahigh catalytic activity. However, the “shining” performance is dimmed by their high cost and short lifetime. Thus, obtaining alternatives with comparable OER catalytic activity as well as long-term stability is required to advance the utilisation of sustainable energy.

To address this challenge, the authors turned their attention to a low-cost transition metal, nickel. They developed a hydrothermal method using nickel foams to grow highly crystalline and near-vertically aligned NiFe-hydroxide nanosheets as OER catalysts (Figure 1a). The seamless integration between the hydroxide nanosheets and the nickel substrates reduces the contact resistance and facilitates interfacial electron transfer. The near-vertical orientation (Figure 1b) allows water molecules to fully contact the catalysts. Both of the characteristics render excellent OER catalytic activity. Additionally, the high crystallinity (Figure 1c) ensures the catalysts are robust enough to withstand extensive use without degradation in performance.

Figure 1. (a) The schematic illustration of the synthetic procedures of the NiFe-hydroxide [Fe-Ni(OH)2] nanosheets supported on nickel foams (NF). (b) The scanning electron microscopy image shows the near-vertically aligned nanosheets on a piece of nickel foam. (c) The transmission electron microscopy image reveals the crystallinity of the synthesized catalyst.

The NiFe-hydroxide nanosheets outperform most of the state-of-the-art OER catalysts, including those containing noble metal elements. Specifically, the nanosheets exhibit an onset potential of 1.497 V (Figure 2). The onset potential is a measure of the catalytic activity that equals the magnitude of potential required to yield a current density of 10 mA/cm2 (when appreciable amount of oxygen gas is evolved). Outstandingly, the onset potential of the NiFe-hydroxide is the smallest among the catalysts selected for comparison.

Figure 2. The polarisation curves of different OER catalysts. The onset potential is marked by the dotted line in the inset.

The catalytic activity is also highly stable, with no loss in performance after at least 100 h of measurement. Interestingly, the onset potential further shifts to a lower value of 1.465 V after 100 h. The authors attributed this observation to a “self-activation” process that involves the formation and accumulation of nickel oxyhydroxide (NiOOH) on the surface of the nanosheets.

The hydrothermal method demonstrated here could be used to synthesize other cost-effective crystalline catalysts to develop catalysts for reactions beyond OER, such as hydrogen evolution and carbon dioxide reduction.

To find out more please read:

Free-Standing Single-Crystalline NiFe-Hydroxide Nanoflake Arrays: A Self-Activated and Robust Electrocatalyst for Oxygen Evolution

Jinlong Liu, Yao Zheng, Zhenyu Wang, Zhouguang Lu, Anthony Vasileff and Shi-Zhang Qiao

Chem. Commun. 2017, DOI: 10.1039/c7cc08843d

About the blogger:

Tianyu Liu obtained his Ph.D. (2017) in Physical Chemistry from University of California, Santa Cruz in United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is a blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Binder-free Integration of Bismuth Nanoflakes onto Nickel Foams for Sodium-ion Batteries

A new type of bismuth-based electrode material for sodium-ion batteries has been synthesized. This electrode consists of bismuth metal nanoflakes seamlessly integrated onto nickel foams. The electrode contains no polymer binders, a crucial component required to retain the structural integrity of most battery electrodes. This binder-free feature improves the amount of charge being stored (i.e. capacity) at fast charging rates.

Sodium-ion batteries are attracting worldwide research efforts as electric energy storage devices, in addition to the prevalent lithium-ion batteries, due to the abundance of sodium. Similar to the preparation of other battery electrodes, fabricating sodium-ion battery electrodes generally requires binders, e.g. polyvinylidene fluoride (PVDF), to hold powdered electrode materials together and glue them to metal supporting substrates. However, the electrically insulating nature of the binders impedes fast electron transport between electrode materials and supporting substrates, consequently degrading the capacity of the batteries at fast charging rates.

Now in ChemComm, researchers from Nankai University & the Collaborative Innovation Center of Chemical Science and Engineering in China demonstrate a bismuth-based electrode material that does not involve a binder. This characteristic is realized by the in-situ growth of bismuth nanoflakes onto nickel foams through a solution-based replacement reaction (Figure 1). Because the nanoflakes grow directly from the nickel foam surface and firmly anchor onto nickel (Figure 2a), the resultant Bi/Ni composite can be directly used as an electrode. Specifically, the bismuth nanoflakes and nickel foam serve as the active material and supporting substrate, respectively.

The Bi/Ni composite exhibited excellent electrochemical performance. It achieved a high capacity of 377.1 mAh/g at a current density of 20 mA/g. Significantly, when the current density increased 100-fold, its capacity could still retain 206.4 mAh/g, which is more than half of the capacity obtained at 20 mA/g (Figure 2b). This outstanding capacity retention is a benefit of the binder-free characteristic that reduces the resistance of electron transport.

The authors then elucidated the working mechanism of the bismuth nanoflakes by in-situ Raman spectroscopy. They concluded that a two-step alloying process was responsible for the charge storage activity.

Figure 1. A schematic illustration showing the synthetic process of the binder-free Bi/Ni electrode. By inserting a piece of nickel foam into an ethylene glycol (EG) solution containing bismuth(III) nitrate, Bi3+ can replace Ni metal, be reduced to Bi metal and deposit on the Ni metal surface.

 

Figure 2. (a) A scanning electron microscopy image of the bismuth nanoflakes. (b) A plot showing the capacity of the Bi/Ni electrode at different current densities.

 

The successful synthesis of the binder-free electrode is expected to encourage future works on the design and synthesis of integrated electrode materials to advance the performance of sodium-ion batteries.

 

To find out more please read:

In situ Synthesis of Bi Nanoflakes on Ni Foam for Sodium-ion Batteries

Liubin Wang, Chenchen Wang, Fujun Li, Fangyi Cheng and Jun Chen

Chem. Commun. 2017, DOI: 10.1039/c7cc08341f

About the blogger:

Tianyu Liu obtained his Ph.D. in Physical Chemistry from University of California, Santa Cruz in United States. He is passionate about scientific communication to introduce cutting-edge research to both the general public and scientists with diverse research expertise. He is a web blog writer for Chem. Commun. and Chem. Sci. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Commemorating Michael Faraday (1791-1867) – call for papers in physical chemistry

This year we are commemorating the 150th anniversary of the death of Michael Faraday, perhaps one of the most prolific and influential scientists who ever lived. His ground-breaking research into the relationship between electricity and magnetism ultimately led to the invention of the electric motor.

One of his most well-known creations, the Faraday cage, is the basis of MRI machines which are routinely used for a range of medical diagnoses. He also discovered benzene, pioneered research into nanotechnology, and gave his name to the Faraday Effect, Faraday’s Law, and the SI unit of capacitance, the farad.

At the Royal Society of Chemistry, we are honouring Michael Faraday with a special Chemical Communications web themed issue, highlighting key discoveries and developments in physical chemistry.

We encourage you to submit your best research to be included in this unique collection! More information about our article types can be found here. Submit at www.rsc.org/ChemComm by 31st July 2017! Please note that all submissions will be subject to peer review in accordance with the journal’s quality and standards. If you are interested in this opportunity, please email chemcomm-rsc@rsc.org

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Fluorescently finding a specific disease marker needle in a biological haystack

The early detection and monitoring of disease is a somewhat recent advancement in healthcare that offers the significant advantage of being able to treat an illness in its initial stages, rather than once it has already manifested itself in the patient. Such a feat requires, however, the ability to see very specific and characteristic disease markers in situ, not unlike the search for a needle in a haystack.
 
Luckily, with the advent of fluorescence (and other) imaging techniques, methods have been developed whereby, in combination with contrast agents that are able to interact with specific molecules in the body, cell chemistry and function can be observed with high sensitivity, and, more importantly, abnormalities in these processes noticed in real time.
 
The art and ultimate success of this fluorescence imaging comes from the design of the contrast agent employed – the probe should be able to selectively recognise and target the relevant disease marker reversibly and under biological conditions. A number of approaches currently exist that meet these requirements, one of which is the boronic acid recognition motif that is able to act as a molecular receptor for the 1,2- and 1,3-diols commonly expressed in carbohydrates and complex glycoproteins. Tony James and his team from the University of Bath, whose own research focuses on such use of boronic acid receptors in the detection of carbohydrates, have summarised the recent and exciting advances in this particular field of selective biological imaging.
 
The well-known and strong affinity of boronic acids for carbohydrates offers a convenient means of detecting commonly expressed markers in diseases including some cancers, as well as Alzheimer’s, autoimmune, and heart diseases. As such, the attachment of this relatively simple chemical moiety to fluorescent small molecular, polymeric or benzoxaborale-based probes offers a diagnostic tool that is able to detect, monitor, and aid in the personalised treatment of such significant and life-changing diseases.
 
This Feature Article convincingly highlights the impact that boronic acid-based fluorescence imaging will ultimately have on a range of important clinical and theranostic practices and their successes.
  
Read this hot ChemComm article in full:
X. Sun, W. Zhai, J. S. Fossey and T. D. James
Chem. Commun., 2016, 52, 3456–3469
DOI: 10.1039/C5CC08633G

About the Writer:
Anthea Blackburn is a guest Web Writer for Chemical Communications. Anthea hails from New Zealand, carried out her graduate studies in mechanostereochemistry under the guidance of Prof. Fraser Stoddart in the US, and has recently relocated to live in London. She is a recent addition to the Econic Technologies team, where she is working on the development of new catalysts for the environmentally beneficial preparation of polycarbonates from CO2.
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm Emerging Investigator Lectureship: Marina Kuimova

Dr Marina Kuimova (Imperial College London) was a recipient of the 2013 ChemComm Emerging Investigator Lectureship.

Marina has just completed her lectureship tour which took place in three locations in Europe from 7 – 13 July:

Kuimova

ChemComm Lectureship recipient Marina Kuimova giving her lecture at the IUPAC Symposium on Photochemistry

Our annual lectureship recognises an emerging scientist in the early stages of their independent academic career.

Professor Louise Berben (University of California Davis, USA) was the other recipient of the lectureship last year and we have just announced the 2014 winners – look out for further details of their lectureship tours soon.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)