Archive for the ‘Subject Areas’ Category

Synthesis of Tin Dioxide Nanotubes for Lithium-ion Batteries with “A Grain of Oxalate Salt”

Preparation of tube-shaped electrode materials for lithium-ion batteries is a trending topic. Tubes with hollow cylindrical bodies allow exposure of the electrodes’ interior surface and can accommodate the large volumetric expansion commonly observed when lithium ions diffuse (either via intercalation or alloying) into the electrodes. The aforementioned two characteristics improve the specific capacity (a measure of how much electric energy one electrode can hold) and lifetime of electrodes.

Recently, the Mai research group from Wuhan University of Technology, China demonstrated a straightforward method for the synthesis of tin dioxide nanotubes as high-performance anodes for lithium-ion batteries. They adopted manganese(III) oxyhydroxide (MnOOH) nanowires as the sacrificial templates and immersed them in a batch of aqueous solutions containing tin(II) cations and oxalate anions (C2O42-). Afterwards, they warmed the mixture at 60 oC under constant magnetic stirring for 4 h and collected a white precipitate consisting of tin dioxide nanotubes. These nanotubes were then washed and coated with carbon thin films to improve their electrical conductivity and structural stability before being subjected to performance evaluations.

The presence of oxalate anions was crucial for producing the nanotubes with a well-defined shape. The function of these anions was revealed through a series of experiments. Oxalate anions first reduced MnOOH to manganese(II) cations and consumed protons in the vicinity of the MnOOH surface. The consumption of local protons increased the local pH and triggered precipitation and oxidation (by dissolved oxygen) of Sn2+ to tin dioxide. The two reactions proceeded, and eventually the MnOOH nanowires disappeared but tubes of tin dioxide formed around their surfaces (Figure 1). Samples obtained without oxalate salts were irregularly shaped.

Figure 1. (a) The schematic illustration of the synthesis steps of the tin dioxide nanotubes. (b) Scanning electron microscopy and (c) transmission electron microscopy images of the as-prepared tin dioxide nanotubes.

The carbon-coated tin dioxide nanotubes showed superior stability performance to bare tin dioxide nanotubes, as shown from the slower capacity-fading rate depicted in Figure 2a. In addition, carbon coating did not significantly sacrifice nanotubes’ charge-storage performance as both electrodes with and without a coating exhibited comparable capacity at all tested current densities (Figure 2b).

Figure 2. Performance comparison between carbon-coated tin dioxide nanotubes (SnO2@C NTs) and bare tin dioxide nanotubes (SnO2 NTs): (a) long-term stability and (b) capacity achieved at different current densities and charge-discharge cycle numbers.

To find out more please read:

Oxalate-assisted Formation of Uniform Carbon-confined SnO2 Nanotubes with Enhanced Lithium Storage

Chunhua Han, Baoxuan Zhang, Kangning Zhao, Jiashen Meng, Qiu He, Pan He, Wei Yang, Qi Li and Liqiang Mai

DOI: 10.1039/c7cc05406h

About the blogger:

Tianyu Liu is a Ph.D. in chemistry graduated from University of California, Santa Cruz in United States. He is passionate about scientific communication to introduce cutting-edge researches to both the general public and the scientists with diverse research expertise. He is a web blogger for the Chem. Commun. and Chem. Sci. blog websites. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Janus Particle Chains that Can Rotate, Dissipate and Recombine

Janus is a god in ancient Roman mythology with two opposing faces. Its name has been brought to materials science to label particles with two or more distinct faces as “Janus particles”. Integrating multiple functions into one physical entity, Janus particles with various properties are extensively adopted as catalysts, electronic components and other applications.

Reporting in Chemical Communications, Bart Jan Ravoo and co-workers from Westfälische Wilhelms-Universität Münster in Germany developed a Janus particle colloidal assembly using a sandwich micro-contact printing method, a strategy reported previously by the same group. The Janus particle assembly consists of Janus particle chains, with the structure of one chain illustrated in Figure 1b. The authors first capped a batch of silica micro-beads with tri-block co-polymers on opposing ends (green parts shown in Figure 1). These copolymers serve as arms that extend and attach to functionalized magnetite (Fe3O4) nanoparticles. Two Janus particles will become magnetically glued together if they connect to the same nanoparticle at the two caps. This connection propagates and eventually forms Janus particle chains mainly consisting of two to four particles.

Figure 1. The schematic illustration depicting the structure of a Janus particle chain.

The artificial chains are responsive to an external magnetic field and photons with different wavelengths. Owing to the magnetic nanoparticles, the chains tend to arrange themselves according to the direction of the applied magnetic field. As shown in Figure 2a, the authors successfully rotated a chain by moving around a magnet.

Moreover, radiating the chains using UV light and green visible light will alter the chain configuration. The light sensitivity is rooted in a light-induced isomerization reaction of the co-polymer linkers: green light yields adhesive trans-isomers, whereas UV light produces cis-isomers that detach from magnetite. Hence, dissipation of the chains into individual Janus particles and then rejoining the particles together can be readily accomplished (Figure 2b).

Figure 2. Optical microscopy images showing (a) the magnetic and (b) the photo-switching properties of one Janus particle chain. All scale bars are 10 µm.

The demonstrated assembly is just the tip of the iceberg for Janus particle assemblies. As claimed by the authors, any acrylate in principal can be used to build the co-polymer linkers, resulting in colloidal assemblies with versatile features.

To find out more please read:

Self-assembly of Colloidal Molecules that Respond to Light and a Magnetic Field

Sven Sagebiel, Lucas Stricker, Sabrina Engel and Bart Jan Ravoo

DOI: 10.1039/c7cc04594h

About the blogger:

Tianyu Liu is a Ph.D. in chemistry graduated from University of California-Santa Cruz. He is passionate about scientific communication to introduce cutting-edge researches to both the general public and the scientists with diverse research expertise. He is a web writer for the Chem. Commun. and Chem. Sci. blog websites. More information about him can be found here.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Elucidating the Stability of Two Metal-Organic Frameworks toward Carbon Dioxide Sorption: A Comparative Study

Metal-organic frameworks (MOFs) are coordination networks consisting of organic ligands and metal cores. They possess crystalline structures with metal complexes as the basic building blocks. These complexes assemble together and extend periodically to form the MOF structures. MOFs represent a family of highly porous materials with ultrahigh surface area (typically >1000 m2 g-1). Other attractive characteristics for MOFs are abundant active metal cores and unique porous structures with tunable pore width, useful for gas storage applications.

Capturing carbon dioxide has evolved into an intriguing research area, mainly due to environmental concerns triggered by high levels of greenhouse gas emissions. Some MOFs have already been explored as carbon dioxide storage materials and exhibited storage capability exceeding that of conventional absorbents (e.g. amines). Aside from the absorption capacity of carbon dioxide, the performance stability over prolonged operation periods is another figure of merit for MOF-based absorbents. However, there are limited studies in this area. Now for the first time, research groups led by Zeng and Zhao from National University of Singapore compared the performance stability of two representative MOFs, HKUST-1 and UiO-66(Zr). The unit cell of the two MOFs are shown in the inset of Figure a.

The two aforementioned MOFs were subjected to 500 carbon dioxide absorbing and desorbing cycles (Figure a). The carbon dioxide uptake amount of the two MOFs was gauged at specific cycle numbers (Figure b). Whilst HKUST-1 displayed a consistent decreasing storage capacity with increasing cycle number, the capacity of UiO-66(Zr) fluctuated but remained relatively constant. The results clearly indicate that HKUST-1 is more vulnerable and instable than UiO-66(Zr) during long-term working cycles.

The authors then investigated the mechanisms associated with the different stability performances. They first observed that the surface area of HKUST-1 decreased 24% to 1270 m2 g-1 after the stability test, whereas that of UiO-66(Zr) remained relatively intact. Moisture-induced structural collapse was excluded as a possible reason by carrying out a control experiment with ultra-pure and dry hydrogen gas. The authors then exploited multi-frequency atomic force microscopy and concluded that the difference in elastic modulus of the two MOF crystals played an important role in determining the corresponding MOF durability. UiO-66(Zr) has an elastic modulus (ca. 28 GPa) much higher than that of HKUST-1 (ca. 19 GPa), meaning that the former is more elastic than the latter. The high elasticity of UiO-66(Zr) can efficiently buffer the volumetric deformation caused by carbon dioxide absorption and desorption, preventing UiO-66(Zr) crystals from structural failure.

Figure. (a) Illustration of one cycle of the carbon dioxide absorption-desorption test. The inset shows where one carbon dioxide molecule resides in the corresponding MOFs. (b) The evolution of carbon dioxide uptake capacity (blue) and surface area (black) of HKUST-1 and UiO-66(Zr).

This work is expected to provide general guidelines on studying the structural stability of other MOFs with applications associated with gas storage and separation.

 

To find out more please read:

Structure Failure Resistance of Metal-organic Frameworks toward Multiple-cycle CO2 Sorption

Zhigang Hu, Yao Sun, Kaiyang Zeng, and Dan Zhao

DOI: 10.1039/c7cc04313a

About the author:

Tianyu Liu is a Ph.D. in chemistry graduated from University of California-Santa Cruz. He is passionate about scientific communication to introduce cutting-edge researches to both the general public and the scientists with diverse research expertise. He is a web writer for the Chem. Commun. and Chem. Sci. blog websites. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Dissolving and Stabilizing the Precursor of Graphene in Organic Solvents

Graphene, a two-dimensional single-layer graphite sheet, has aroused worldwide attention since the last decade. Its ultrahigh electrical and thermal conductivities, high mechanical stiffness and unique band structure have attracted extensive research efforts to develop graphene-based electronics, photonics, printing materials etc. Currently, among various strategies, the wet-chemical method still remains the most practical protocol for large-scale production of graphene in laboratories. This process in general involves two steps: the oxidative exfoliation of graphite, a.k.a. Hummers’ method, followed by reduction of the oxidized graphite sheets. Graphite oxide (GO), possessing a layered structure analogous to graphite but with rich oxygen functionalities (such as hydroxyl and carboxyl groups) anchored on each layer, is the product of the first step and thus serves as a precursor of graphene.

As the aforementioned wet chemical method is usually carried out in water, GO is primarily stored as aqueous-based colloidal dispersions. However, GO is reported to be chemically unstable in water since water molecules can react with electropositive carbons of GO. Though the reaction is not rapid, it partially removes the oxygen functionalities and breaks the carbon matrix, which eventually forces GO to precipitate and reduces the shelf life of the GO precursor.

Recently, Shi and coworkers from Tsinghua University have successfully prolonged the lifetime of GO by dispersing it in organic solvents. During the last purification step of the Hummers’ method, instead of using de-ionized water, anhydrous ethanol was utilized to rinse the GO product and obtain ethanol-wetted GO. X-ray diffraction revealed that ethanol molecules existed in the inter-layer space between adjacent layers. The ethanol-wetted GO could be readily dissolved in propylene carbonate, an organic solvent, for concentrations ranging from 0.1 mg mL-1 to 40 mg mL-1 (Figures a and b). More importantly, GO could be stored in propylene carbonate for at least a month without a colour change, whilst the colour of aqueous GO dispersion discernibly darkened (Figure c). Spectroscopic studies indicated that the colour change was attributed to the loss of oxygen functionalities. The results unambiguously prove that GO in propylene carbonate is much more stable than GO in water.

Figure. (a) Dissolution of ethanol-wetted GO in propylene carbonate. (b) GO colloidal dispersions with various concentrations. (c) Color evolution of GO dispersions (1 mg mL-1) with water and propylene carbonate as solvents before and after storing for 28 days under ambient conditions.

Aside from propylene carbonate, dimethyl sulfoxide, ethylene glycol and N,N-dimethylformamide are solvents that can dissolve the ethanol-wetted GO. The successful stabilization of GO colloidal dispersions could ensure the steady production of graphene in laboratories, as well as reveal new opportunities to develop GO-based devices.

To find out more please read:

Organic Dispersions of Graphene Oxide with Arbitrary Concentrations and Improved Chemical Stability

Wencheng Du, Mingmao Wu, Miao Zhang, Guochuang Xu, Tiantian Gao, Liu Qian, Xiaowen Yu, Fengyao Chi, Chun Li and Gaoquan Shi

DOI: 10.1039/c7cc04584k

About the author:

Tianyu Liu is a Ph.D. in chemistry graduated from University of California-Santa Cruz. He is passionate about scientific communication to introduce cutting-edge researches to both the general public and the scientists with diverse research expertise. He is a web blog writer for the Chem. Commun. and Chem. Sci. blog websites. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A warm welcome to Sandeep Verma, our new ChemComm Associate Editor

We are excited to welcome new Associate Editor Sandeep Verma (Indian Institute of Technology Kanpur) to the ChemComm Editorial Board

Professor Sandeep Verma

Sandeep Verma holds the positions of Professor of Chemistry and Shri Deva Raj Endowed Chair Professor at the Department of Chemistry, Indian Institute of Technology Kanpur, which he joined in 1997. His work has been recognized by numerous awards such as Swarnajayanti Fellowship (2005), Shanti Swarup Bhatnagar Prize in Chemical Sciences (2010), Department of Atomic Energy-Science Research Council Outstanding Investigator Award (2012), Ranbaxy Research Award in Pharmaceutical Sciences (2013), J C Bose National Fellowship (2013), Silver Medal, Chemical Research Society of India (2017), and National Prize for Research on Interfaces between Chemistry and Biology (2017).

His main research interests include peptide/protein assemblies for disease modeling, soft biomaterials, bioimaging, and surface chemistry of metal complexes. In particular, his group focuses on heterogeneous catalysts designed by developing polymeric templates based on nucleobase frameworks for application to interesting chemical and biochemical reactions. His work also focuses on the construction of architectures mimicking biological assemblies and metal-organic frameworks.

As a ChemComm, Sandeep will be handling submissions to the journal in the above areas. Why not submit your next paper to his Editorial Office?

Read Professor Verma’s recent articles published in ChemComm and its sister journals:

Chemical sensing in two dimensional porous covalent organic nanosheets
Gobinda Das, Bishnu P. Biswal, Sharath Kandambeth, V. Venkatesh, Gagandeep Kaur, Matthew Addicoat, Thomas Heine, Sandeep Verma and Rahul Banerjee
Chem. Sci., 2015, 6, 3931-3939

Organostannoxane-supported nucleobase arrays: synthesis and supramolecular structures of polymeric and molecular organotin complexes containing guanine, uracil and 2-aminopurine
Subrata Kundu, N. Nagapradeep, Balaram Mohapatra, Sourav Biswas, Sandeep Verma and Vadapalli Chandrasekharn
CrystEngComm, 2016, 18, 4807-4817

Assembly, postsynthetic modification and hepatocyte targeting by multiantennary, galactosylated soft structures
Anisha Thomas, Akansha Shukla, Sri Sivakumarb and Sandeep Verma
Chem. Commun., 2014, 50, 15752-15755

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Releasing A Pungent Anti-cancer Reagent with A Trisulfide Linker Inspired by Garlic

People who love the taste of garlic are often annoyed by its lingering smell. While there are various tips to get rid of this unpleasant odor, have you ever thought that this garlic aroma brings you chemical compounds that are potent anti-cancer reagents?

Diallyl trisulfide, one of the natural occurring components rendering the flavor of garlic, is able to release hydrogen sulfide (H2S) upon contacting with thiol compounds (i.e., organic molecules with –SH functional groups). H2S is a pungent gas that one might never forget after sniffing a rotten egg. However, this “notorious” gas, when at low concentrations, is reported to be friendly to our bodies. It relaxes vascular smooth muscle, reduces blood pressure, lowers risk associated with cancer as well as protects gastrointestinal, nervous and immune systems. All the aforementioned benefits of H2S have aroused worldwide efforts in developing H2S-releasing and bio-compatible materials that mimic the natural products for pharmaceutical applications.

Davis, Quinn and co-workers from Monash University, Australia and University of Warwick, United Kingdom, recently published a paper in Chemical Communications that reports a trisulfide-linked organic polymer capable of releasing H2S when meets –SH groups. As shown in the scheme below, the synthesized polymer is composed of three parts: a polyethylene glycol (PEG) unit on the left (in blue), a cholesterol (CHOL) group on the right (in orange), and a linker (in black) joining the two ends. PEG and CHOL are chosen mainly due to their bio-compatibility. By changing the structure of the middle linker, the authors obtained three types of polymers that behave differently when mixing with thiol compounds. The trisulfide linker (denoted as T) enables release of H2S gas and initiates polymer degradation. The disulfide linker (denoted as D) allows polymer degradation only. The amide linker (denoted as C) containing no sulfide atoms is inert to the thiol exposure.

Scheme. The chemical structure of the synthesized polymers with different linkers.

Experiments showed that the T-linked polymers are capable of releasing H2S both in vitro and in vivo.

A fluorescent probe, which can be reduced by H2S and becomes fluorescent, is applied to detect the existence of H2S. As shown in Figure a, the trisulfide linked polymers tested in vitro exhibited the highest fluorescence when mixing with L-cysteine (a thiol compound to trigger H2S generation). For the in vivo measurements, the authors incubated HEK293 cells with the polymers and the probe. Similar as the in vitro results, the fluorescence intensity of the cells containing the T-linked polymers is the highest (Figure b). Both the in vitro and in vivo results unambiguously proved that the presence of the T-linker was responsible for generating H2S. Additionally, another set of tests using Nile Red confirmed the biodegradability of the T-linked polymers.

Figure. (a) Fluorescence spectra collected from different systems in vitro. The inset shows the chemical reaction between the probe (SF4) and H2S that displays fluorescence. (b) Fluorescence intensity of different polymers over time in HEK293 cells.

The developed tri-sulfide linker may allow the mimicry of endogenous biosynthesis, the initiation of discrete signaling events and the synthesis of next-generation pharmaceutical excipients.

 

To find out more please read:

Garlic-inspired Trisulfide Linkers for Thiol-stimulated H2S Release
Francesca Ercole, Michael R. Whittaker, Michelle L. Halls, Ben J. Boyd, Thomas P. Davis and John F. Quinn
DOI: 10.1039/c7cc03820h

About the author:

Tianyu Liu is a Ph.D. in chemistry graduated from University of California-Santa Cruz. He is passionate about scientific communication to introduce cutting-edge researches to both the general public and the scientists with diverse research expertise. He is a web writer for the Chem. Commun. and Chem. Sci. blog websites. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A Promising Cathode Material for Magnesium-ion Batteries Has Been Identified

Research associated with batteries is gaining increasing attention and extensive efforts in recently decades, partly due to the development of sustainable energy to combat a series of problems including fossil fuel depletion, environmental pollution and global warming. Batteries are indispensable energy storage devices for the utilization of sustainable energy (e.g., solar and wind energy). One of the battery’s cutting-edge research topics is to achieve novel batteries with higher capacity (a figure-of-merit to measure how much electrical energy a battery can store) and better reliability than the lithium-ion batteries that currently dominate the battery market.

In the past decade, batteries based on magnesium ions, termed as magnesium-ion batteries, are emerging. The magnesium-ion batteries possess at least two advantages over lithium-ion batteries. Firstly, their typical anode material, magnesium metal, has a theoretical capacity of 3833 mAh/cm3. This value is much higher than that of graphite, a conventional anode material for lithium-ion batteries. Secondly, the formation of metal dendrite on anode surface can be avoided by replacing lithium metal with magnesium metal. Metal dendrites grow from anodes can eventually touch cathodes, causing electric short circuits and triggering fire and explosion. Therefore, magnesium-ion batteries are safer than lithium-ion batteries. However, nothing can be perfect. The limited mobility of Mg2+ of cathode materials greatly reduces the capacity (particularly at fast charging rates) and practicability of the magnesium-ion batteries.

Now Rong et al. has published an article in Chemical Communications stating that a promising cathode material capable of fast conducting Mg2+ for magnesium-ion batteries has been identified. The material is a molybdenum phosphate compound with a chemical formula of Mo3(PO4)3O. It is composed of several edge-sharing MoO6 octahedra, corner-sharing MoO5 trigonal bipyramids, MoO4 tetrahedra, and PO4 tetrahedra. Using advanced simulation and computation techniques (i.e., the first-principles density functional theory), the authors first proved that Mg2+ can stably reside in some interstitial sites among the aforementioned polyhedra, indicating the identified compound is active for Mg2+ storage. In addition, the authors plotted two possible pathways for Mg2+ diffusion during charge and discharge processes (shown in the Figure). As illustrated in Figure a1, the first one is an inner-channel path along the b-axis. The second one is an inter-channel path along the c-axis.

The most striking feature of the path #1 is its ultra-low activation barrier (i.e., the highest potential energy that a Mg2+ need to overcome when diffusing) of only ~80 meV (Figure a2). Such a low diffusion barrier is expected to allow facile Mg2+ diffusion within the bulk of Mo3(PO4)3O, which can boost the capacity of the magnesium-ion batteries particularly at elevated charging rates. On the contrary, the activation barrier of the path #2 is as high as ~1200 meV. The authors claimed that the Mg2+ diffusion along the path #2 “should be ~1018 times less frequent than” the path #1.

 

 

Figure (a1) schematic of the Mg2+ diffusion path #1 and (a2) its corresponding diffusion potential barrier distribution along the way. (b1) Schematic of the Mg2+ diffusion path #2 and (a2) its corresponding diffusion potential barrier distribution along the way.

 

At last, the authors estimated the theoretical average potential that Mo3(PO4)3O can reach is 1.98 V, corresponding to a promising energy density of 173 Wh/kg. Although the proposed phosphate is hypothetical, the investigation of its stability reveals the possibility that this material can be experimentally synthesized.

To find out more please read:

Fast Mg2+ Diffusion in Mo3(PO4)3O for Mg Batteries
Ziqin Rong, Penghao Xiao, Miao Liu, Wenxuan Huang, Daniel C. Hannah, William Scullin, Kristin A. Persson and Gerbrand Ceder
DOI: 10.1039/c7cc02903a

About the author:

Tianyu Liu is a Ph.D. in chemistry graduated from University of California-Santa Cruz. He is passionate about scientific communication to introduce cutting-edge researches to both the general public and the scientists with diverse research expertise. He is a web writer for the Chem. Commun. and Chem. Sci. blog websites. More information about him can be found at http://liutianyuresearch.weebly.com/.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Bioinspired catalysis for eco-friendly chemical transformations in water

One challenge that today’s chemists face is making large-scale processes more economical and environmentally friendly. Within this area, there has been a surge of interest in the development of bioinspired catalytic systems which, relative to traditional catalysis, have the potential to reduce chemical waste by 85% by performing efficient reactions in pure water.

Prof. Normand Voyer and coworkers from Laval University have recently published an eco-friendly methodology for the preparation of chiral a,b-epoxyketones in pure water using the supramolecular catalyst, homo-oligopeptide poly-L-leucine (PLL).

Achieving enantioselectivity in organic reactions carried out in water poses challenges but peptide derived catalysts have shown great promise in this regard. The best example of this is the Juliá-Colonna epoxidation which has been studied and improved since its discovery in the early 1980’s. While significant progress in this area has been made, most transformations using natural homo-oligopeptides have required the use of an organic co-solvent to improve reaction efficiency.

Professor Voyer shows the new, eco-friendly process begins with several homo-oligopeptides being synthesised from their corresponding amino acid N-carboxyanhydrides and used to catalyse the Juliá-Colonna epoxidation of an electron deficient olefin in water. Of all the catalysts, PLL provided the highest conversion and enantioselectivity (Table) however, the generality of the reaction appeared to be dependent on the sterics and electronics of the substrates.

Computational analysis was used to model the PLL supramolecular catalyst and rationalise the observed reaction trends. PLL adopts a helical conformation with hydrophobic grooves distributed along the helical axis. When modelled with substrate 1 (Table), it was observed that the chalcone moiety fits perfectly within the PLL groove and forms a stable complex. It is this complexation that also aids in solubility of the ketone, removing the need for an organic co-solvent.

Epoxidation is proposed to take place through a “groove sliding” mechanism, where the substrate slides into the hydrophobic pocket generated by the leucine side chains until it reaches the N-terminal of PLL where a hydroperoxide anion is waiting (Figure). This mechanistic proposal lends to the enantioselectivity of the reaction and explains the observed electronic and steric constraints.

While the scope of PLL remains limited, this study underscores the fact that conformation and the hydrophobic nature of the oligopeptide catalysts are critical for carrying out environmentally benign organic reactions and has set a precedent for the development of future biomimetic supramolecular catalysts.

To find out more see:

Revisiting the Juliá–Colonna enantioselective epoxidation: supramolecular catalysis in water
Christopher Bérubé, 
DOI:10.1039/C7CC01168G


Victoria Corless is currently completing her Ph.D. in organic chemistry with Prof. Andrei Yudin at The University of Toronto. Her research is centred on the synthesis of kinetically amphoteric molecules which offer a versatile platform for the development of chemoselective transformations with particular emphasis on creating novel biologically active molecules.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Elizabeth New: Winner of the 2017 ChemComm Emerging Investigator Lectureship

On behalf of the ChemComm Editorial Board, we are delighted to announce Elizabeth New from the University of Sydney, Australia, as the winner of the 2017 ChemComm Emerging Investigator Lectureship – congratulations, Liz!

Elizabeth New

Liz finished her BSc (Advanced, Hons 1 and Medal) and MSc in Chemistry at the University of Sydney before embarking on a PhD programme at Durham University, UK, working with Professor David Parker. After being awarded her PhD in Chemistry in January, 2010, she was a Royal Commission for the Exhibition of 1851 Postdoctoral Fellow at the University of California at Berkeley within the group of Professor Christopher Chang. She then returned to the University of Sydney as an ARC DECRA Fellow to start her independent research career in 2012, establishing herself at the cutting-edge of molecular imaging and developing novel chemical imaging tools to supplement existing imaging platforms.

She developed the first set of reversible sensors for cellular redox environment containing flavins as the sensing group, including the first examples of ratiometric reversible cytoplasmic sensing, reversible mitochondrial sensing, and ratiometric mitochondrial sensing. She has also developed the first fluorescent sensor for a platinum metabolite, enabling the unprecedented visualisation of cisplatin metabolism, and a subsequent sensor to study the metabolism of transplatin analogues. Her research group is one of the very few in the world to be investigating cobalt complexes as responsive magnetic resonance contrast agents, and she has developed new methods for ratiometric fluorescent sensing, as well as new strategies to control subcellular targeting. Her research excellence has been recognised by a number of awards, among them the NSW Early Career Researcher of the Year (2016) and the Asian Biological Inorganic Chemistry Early Career Researcher Award (2014).

Passionate about communicating science, she has spoken about her research to high school students (as the Royal Australian Chemical Institute (RACI) Nyholm Youth Lecturer, 2014-5, and the RACI Tasmanian Youth Lecturer, 2017), to the general public (as a NSW Young Tall Poppy Awardee, 2015), and to politicians and policy-makers (as elected executive member of the Australian Academy of Science’s Early-Mid Career Researcher Forum). She is currently a Senior Lecturer and Westpac Research Fellow in the School of Chemistry at the University of Sydney, where her group continues to focus on the development of molecular probes for the study of biological systems.

As part of the Lectureship, Elizabeth will present a lecture at three locations over the coming year, with at least one of these events taking place at an international conference, where she will be formally presented with her Emerging Investigator Lectureship certificate. Details of her lectures will be announced in due course – keep an eye on the blog for details.

Read these articles by Elizabeth New:

A cobalt(II) complex with unique paraSHIFT responses to anion
E. S. O’Neill, J. L. Kolanowski, P. D. Bonnitcha and E. J. New
Chem. Commun., 2017, 53, 3571-3574
DOI: 10.1039/C7CC00619E, Communication

On the outside looking in: redefining the role of analytical chemistry in the biosciences
Dominic J. Hare and Elizabeth J. New
Chem. Commun., 2016, 52, 8918-8934
DOI: 10.1039/C6CC00128A, Feature Article
From themed collection 2016 Emerging Investigators

Fluorescent sensing of monofunctional platinum species
Clara Shen, Benjamin D. W. Harris, Lucy J. Dawson, Kellie A. Charles, Trevor W. Hambley and Elizabeth J. New
Chem. Commun., 2015, 51, 6312-6314
DOI: 10.1039/C4CC08077G, Communication,  Open Access

Imaging metals in biology: balancing sensitivity, selectivity and spatial resolution
Dominic J. Hare, Elizabeth J. New, Martin D. de Jonge and Gawain McColl
Chem. Soc. Rev., 2015, 44, 5941-5958
DOI: 10.1039/C5CS00055F, Tutorial Review,  Open Access

A FRET-based ratiometric redox probe for detecting oxidative stress by confocal microscopy, FLIM and flow cytometry
Amandeep Kaur, Mohammad A. Haghighatbin, Conor F. Hogan and Elizabeth J. New
Chem. Commun., 2015, 51, 10510-10513
DOI: 10.1039/C5CC03394B, Communication

The annual ChemComm Emerging Investigator Lectureship recognises emerging scientists in the early stages of their independent academic career. Nominations for the 2018 Emerging Investigator Lectureship will open later in the year – keep an eye on the blog for details, and read more about our previous winners.

2016:    Ang Li from the Shanghai Institute of Organic Chemistry, China

2015:    Deanne D’Alessandro from the University of Sydney, Australia

    Yong Sheng Zhao from the Beijing National Laboratory for Molecular Sciences, China

2014:    Xinliang Feng from the Max Planck Institute for Polymer Research, Germany

2014:    Tomislav Friščić from McGill University, Canada

2014:    Simon M. Humphrey from the University of Texas at Austin, USA

2013:    Louise A. Berben from the University of California at Davis, USA

2013:    Marina Kuimova from Imperial College London, UK

2012:    Hiromitsu Maeda from Ritsumeikan University, Japan

2011:    Scott Dalgarno from Heriot-Watt University, Edinburgh, UK

Also of interest: You can read the 2016 ChemComm Emerging Investigators Issue which highlights research from outstanding up-and-coming scientists and watch out for our 2017 Emerging Investigators issue – coming very soon. You can also take a look at our previous Emerging Investigator issues in 2011, 2012, 2013, 2014 and 2015.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Commemorating Michael Faraday (1791-1867) – call for papers in physical chemistry

This year we are commemorating the 150th anniversary of the death of Michael Faraday, perhaps one of the most prolific and influential scientists who ever lived. His ground-breaking research into the relationship between electricity and magnetism ultimately led to the invention of the electric motor.

One of his most well-known creations, the Faraday cage, is the basis of MRI machines which are routinely used for a range of medical diagnoses. He also discovered benzene, pioneered research into nanotechnology, and gave his name to the Faraday Effect, Faraday’s Law, and the SI unit of capacitance, the farad.

At the Royal Society of Chemistry, we are honouring Michael Faraday with a special Chemical Communications web themed issue, highlighting key discoveries and developments in physical chemistry.

We encourage you to submit your best research to be included in this unique collection! More information about our article types can be found here. Submit at www.rsc.org/ChemComm by 31st July 2017! Please note that all submissions will be subject to peer review in accordance with the journal’s quality and standards. If you are interested in this opportunity, please email chemcomm-rsc@rsc.org

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)