Archive for the ‘News’ Category

Dr Rafal Klajn’s UK tour as the 2018 Cram Lehn Pedersen Prize winner

We are delighted to announce that Dr Rafal Klajn, winner of the ChemComm sponsored 2018 Cram Lehn Pedersen Prize, will be giving a series of lectures at UK universities during the week commencing 16th July 2018.

Rafal began his independent research career in November 2009 at the Weizmann Insitute of Science, Israel, directly after obtaining his PhD degree. His group has worked on nanoscale reactivity and self-assembly – incorporating photo-responsive moieties into nanoporous solids, working with superparamagnetic nanoparticles of various shapes and demonstrating that cubic nanoparticles of iron oxide could spontaneously assemble into helical materials, and developing the concept of “dynamically self-assembling nanoflasks” capable of accelerating chemical reactions using light, working with flexible metal-organic (coordination) cages that can encapsulate diverse organic molecules ranging from fluorescent dyes to nonpolar pharmaceuticals, among other projects.

He is currently an Associate Professor at Department of Organic Chemistry at the Weizmann Institute of Science and now focuses on creating synthetic out-of-equilibrium systems and “life-like” materials, not only to develop innovative functional materials, but also to tackle what he deems as one of the most important and fascinating problems – the origin of life.

As part of the Prize, Rafal presents 3 lectures and we are delighted to announce that 2 of these will be taking place during his UK tour. He will be giving these in conjunction with lectures for the 2017 Chem Soc Rev Emerging Investigator Lectureship that was also awarded to him. You can find details for his upcoming UK tour below.

Day University Host
Monday 16th July University of Bristol Professor Jonathan Reid
Tuesday 17th July Durham University Professor Jonathan Steed
Wednesday 18th July University of Nottingham Professor David Amabilino
Thursday 19th July University of Cambridge Professor Jonathan Nitschke
Friday 20th July University College London (UCL) Dr Tung Chun Lee
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Meeting of Inorganic Chemists Recently Appointed

Chemical CommunicationsChemical Science and Dalton Transactions are pleased to sponsor the 2018 Meeting of Inorganic Chemists Recently Appointed (MICRA). This biennial event is being organised by Dr Timothy Easun and Dr Rebecca Melen from Cardiff University, and is taking place on 10 – 12 September 2018 at Cardiff University in Wales.

The meeting brings together junior inorganic chemistry academics from across the UK to help aid their development into independent researchers through networking and exchanging experiences. MICRA 2018 will have exciting talks from experts such as Paul Saines (University of Kent), Timothy Easun (Cardiff University) and Rebecca Melen (Cardiff University).

For more information and to register, go to: https://www.micra2018.com/

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm poster prize winner at the 16th Symposium for Host-Guest and Supramolecular Chemistry

The 16th Symposium for Host-Guest and Supramolecular Chemistry was held on 2 – 3 June 2018 at the Tokyo University of Science in Japan.

This annual symposium covers all aspects of the chemical sciences related to molecular recognition and supramolecular chemistry, including the discussion of topics around intermolecular interactions. The event included a special lecture by Dr Shigeki Sasaki and invited lectures by Dr Takashi Hayashi and Dr Katsuhiko Ariga.

ChemComm is delighted to announce that the ChemComm poster prize was awarded to Hiroshi Koganezawa from the Tokyo University of Science for a poster entitled ‘Synthesis of [2]Rotaxanes with Spirofluorene and Pyrrole Moieties’.

Well done Hiroshi from everyone at ChemComm!

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

ChemComm poster prize winner at the 2018 European Materials Research Society Spring Meeting

The 2018 European Materials Research Society (EMRS) Spring Meeting was held from the 18th – 22nd June in the Strasbourg Convention Centre in France.

The EMRS Spring Meeting is the society’s major conference and covers all aspects of materials science including energy and environment, biomaterials, semiconductors, nanomaterials, functional materials, and materials processing and characterization. It offers on average 25 topical symposia and is widely recognised as being of the highest international significance, with approximately 2,500 attendees every year.

ChemComm is proud to announce that the ChemComm poster prize was awarded to Dr Manal Alkhamisi from the University of Nottingham (School of Physics and Astronomy) for ‘The Growth and Fluorescence of Phthalocyanine Monolayers and Thin Films on Hexagonal Boron Nitride’. Manal was awarded the prize by ChemComm Associate Editor Steven De Feyter.

Well done Manal!

 

ChemComm Associate Editor Steven De Feyter (left) awarding the poster prize to Dr Manal Alkhamisi (right)

 

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Nucleus infiltrated by peptide gene switch

Researchers in India have taken a step towards selective gene regulation by making a peptide-based artificial transcription factor that can upregulate a luciferase reporter gene in mammalian cells.1

Source: © Royal Society of Chemistry
Top: Schematic representation of the artificial transcription factor. DBD = DNA binding domain, NLS = nuclear localisation signal, AD = activationdomain, CPP = cell penetrating peptide. Bottom: The main DNA recognition motif is a pair of symmetry related helices inserted into the major groove of the target DNA.

Transcription factors are proteins that bind to specific DNA sequences and control gene expression by converting DNA to RNA. Since transcription factors are important for turning genes on or off, the researchers hope that artificial transcription factors could treat diseases by rebalancing perturbations in cellular pathways. Lead researcher, Siddhartha Roy, from the Bose Institute in Kolkata, says their work ‘is part of a continuing effort to develop small peptides that are deliverable inside the cell and can regulate – either inhibit or activate – the expression of specific genes.’

Read the full story by Fiona Tscherny on Chemistry World.

References

1 K Roy et al, Chem. Commun., 2018, DOI: 10.1039/c7cc09279b

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Photoredox sugar synthesis plausible on early Earth

Scientists in the US have carried out experiments confirming that ultraviolet light could have driven the synthesis of simple prebiotically important sugars under conditions found on early Earth.1


Source: © Royal Society of Chemistry
UV light photooxidises cyanocuprates, producing aqueous electrons, which are key for putting into motion a reaction network capable of producing glycolaldehyde and glyceraldehyde

Back in 2012, Dougal Ritson and John Sutherland,2 at the Medical Research Council Laboratory of Molecular Biology in Cambridge, UK, synthesised sugars from cyanocuprates using ultraviolet light – findings that supported the RNA world hypothesis for the origin of life. Now Zoe Todd and Dimitar Sasselov from the Harvard-Smithsonian Centre for Astrophysics, and their colleagues have performed similar experiments, but at lower, and more representative, wavelengths than those previously considered.

Read the full story by Lynn Murphy on Chemistry World.

References

1 Zoe Todd et al, Chem. Commun., 2018, DOI: 10.1039/c7cc07748c (This article is open access.)

2 D Ritson and J Sutherland, Nat. Chem., 2012, 4, 895 (DOI: 10.1038/nchem.1467)

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Tech red unmasked

Tech red, an enigmatic technetium compound that has resisted characterisation for half a century, has been identified using chemical detective-work and computer modelling. The molecule’s unusual chemistry may explain why it has proven so difficult to unmask.1


Source: © Bradley Childs
Tech red forms a red, oily liquid upon condensation

Nuclear chemists have been running into a volatile red oxide of technetium – Tc, a radioactive metal – since at least the 1960s.2 ‘Everybody seems to have accidentally made this a couple of times,’ notes Keith Lawler, a postdoctoral researcher at the University of Nevada Las Vegas (UNLV), US. Although the telltale hue makes tech red easy to spot, it has gone unidentified over the intervening decades. Tech red refuses to form crystals, so can’t studied by crystallographic methods, while technetium’s radioactivity is an inherent barrier to researching its compounds. ‘There are only a handful of laboratories who can work with large amounts of technetium, and even fewer who have access to anything other than simple characterisation techniques,’ explains John McCloy, who investigates radioactive materials at Washington State University, US.

Read the full story by Alexander Whiteside on Chemistry World.

 

1 K V Lawler et al, Chem Commun., 2018, DOI: 10.1039/c7cc09191e (This article is free to access until 7 March 2018.)

2 C Rulfs, R Pacer and R Hirsch, J. Inorg. Nucl. Chem., 1967, 29, 681 (DOI: 10.1016/0022-1902(67)80323-3 )

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Molecular box treats chemists to a strained surprise

Introducing pillar[4]pyridinium – the first of a new family of macrocycles

Pillar[4]pyridinium
Source: Grzegorz Sobczak Oksana Danylyuk and Volodymyr Sashuk

Scientists in Poland have made the most compact multiply charged macrocycle to date. Pillar[4]pyridinium is a cyclic tetramer consisting of four pyridyl units with methylene bridges between their nitrogens and para carbons. The quadruply charged molecule has a very symmetrical and incredibly strained structure. It represents a new class of cationic macrocycles, the pillar[n]pyridiniums.

Read the full story by Jennifer Newton on Chemistry World.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Suzuki–Miyaura–hydrogenation targets 3D drugs

Scientists in the UK have unveiled a way to make pharmaceutical molecules with increased 3D characteristics. The single pot Suzuki–Miyaura–hydrogenation reaction results in sp2–sp3 linked pharmaceutically relevant molecules.

Source: Royal Society of Chemistry
A single pot Suzuki–Miyaura-hydrogenation can be used to furnish lead and fragment-like products in good to excellent yields

The number of tetrahedral carbon atoms, or how 3D a molecule is, is one factor that determines the success of a molecule in clinical drug trials. Molecules with a high sp3 fraction are in demand, however current methods to make them suffer drawbacks. The Suzuki–Miyaura reaction is common for the cross-coupling of sp2–sp3 systems, but alkyl boron or alkyl halides are prone to β-elimination and other side reactions, producing mixtures of products.

Read the full story by Suzanne Howson on Chemistry World.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Tactile alternative to colour changes

Many instrument-free analytical methods, such as pH test strips and home pregnancy tests, indicate their results with a colour change. Now scientists in the US have devised a system that outputs a signal you can feel as well as see.

Source: Royal Society of Chemistry
Visual and tactile detection of ATP – gel shapes indicate a positive result.

Read the full story by Jennifer Newton on Chemistry World.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)