Hot and cold cells: sensitive thermometers for biomaterials

Iain Larmour is a guest web writer for ChemSci. He has researched a wide variety of topics during his years in the lab including nanostructured surfaces for water repellency and developing nanoparticle systems for bioanalysis by surface enhanced optical spectroscopies. He currently works in science management. In his spare time he enjoys reading, photography, art and inventing.

Lanthanide metal–organic frameworks (Ln-MOFs) have recently received increased interest due to their  interesting and useful luminescence characteristics, such as  large Stokes shifts, long luminescence lifetime and a wide emission range – all the way from ultraviolet to near-infrared.  Furthermore, the luminescence of these materials shows strong temperature dependence, which  makes them excellent candidates for the development of luminescent thermometers.  

Ln-MOF thermometers have recently been realised through the mixed lanthanide MOF approach, whereby two distinct lanthanide ions are incorporated into the MOF structure. There is an excellent linear correlation between the intensity ratio of the emissions from the two lanthanide ions and temperature. Such ratiometric luminescent thermometers have distinct advantages over conventional thermometers due to their fast response, high sensitivity and non-invasive operation.

Guodong Qian and team from Zhejiang University recently designed a novel mixed Ln-MOF thermometer with excellent sensitivity over the physiological temperature range (293-313K) by incorporating  Ytterbium and Neodymium into the MOF. With excitation and luminescence in the near infrared window, this thermometer is harmless to biological tissues and its resolution is high enough to measure the temperature differences in pathological cells.  These characteristics make this luminescent thermometer ideal for biological sensing.

Figure (a) from article C5CC07532G

Emission spectra of Nd0.577Yb0.423BDC-F4 in the range of 293–313 K excited at 808 nm; inset: temperature dependence of the normalized intensity of the corresponding transitions.

To find out how more about this thermometer, read the paper in ChemComm today!

A near infrared luminescent metal-organic framework for temperature sensing in the physiological range
Xiusheng Lian, Dian Zhao, Yuanjing Cui, Yu Yang and Guodong Qian
Chem. Commun., 2015, 51, Advanced Article
DOI: 10.1039/C5CC07532G

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Leave a Reply

*