Archive for December, 2013

HOT ChemComm articles for December

A modular LHC built on the DNA three-way junction
Markus Probst, Simon M. Langenegger and Robert Häner
Chem. Commun., 2014, 50, 159-161
DOI: 10.1039/C3CC47490A, Communication

Free to access until 19th January 2014


One pot synthesis of cyclohexanone oxime from nitrobenzene using a bifunctional catalyst
Paula Rubio-Marqués, Juan Carlos Hernández-Garrido, Antonio Leyva-Pérez and Avelino Corma
Chem. Commun., 2014, Advance Article
DOI: 10.1039/C3CC47693F, Communication

Free to access until 19th January 2014


Recent advances in cooperative bimetallic asymmetric catalysis: dinuclear Schiff base complexes
Shigeki Matsunaga and Masakatsu Shibasaki
Chem. Commun., 2014, Advance Article
DOI: 10.1039/C3CC47587E, Feature Article

Free to access until 19th January 2014


From assembled metal–organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage
Arlin Jose Amali, Jian-Ke Sun and Qiang Xu
Chem. Commun., 2014, Advance Article
DOI: 10.1039/C3CC48112C, Communication

Free to access until 19th January 2014


Nitrogenase: a general hydrogenator of small molecules
Ian Dance
Chem. Commun., 2013, 49, 10893-10907
DOI: 10.1039/C3CC46864J, Feature Article

Free to access until 19th January 2014


In situ atomic imaging of coalescence of Au nanoparticles on graphene: rotation and grain boundary migration
Jong Min Yuk, Myoungho Jeong, Sang Yun Kim, Hyeon Kook Seo, Jihyun Kim and Jeong Yong Lee
Chem. Commun., 2013, 49, 11479-11481
DOI: 10.1039/C3CC46545D, Communication
From themed collection Structure and chemistry of materials from in-situ electron microscopy

Free to access until 19th January 2014

THAT’S NOT ALL! Click here for more free HOT ChemComm articles for December!!

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Kiss-and-run drug delivery

Carriers that release hydrophobic substances at cell membranes but do not enter the cells themselves could be the foundation for a new way to deliver drugs into cells, according to a team of scientists in Germany.

  
 The carrier touches the cell membrane for around 100ms to release its cargo which ends up inside lipid droplets (LD) in the cell

Many drugs are not water- or blood-soluble, so nanocarriers are typically used to encapsulate and transport drugs through the bloodstream to target sites where they are then taken inside the cell before releasing their drug cargo. Previous efforts focussed on ensuring successful nanocarrier uptake, as this was assumed to be the best way to deliver drugs into cells. ‘But now, with our new “kiss-and-run” mechanism, we no longer need to worry about whether the carrier can enter the cell,’ says team leader Volker Mailänder from the Max Planck Institute for Polymer Research, ‘only the drug itself needs to do that.’

Mailänder and his team tested their approach using biodegradable poly-L-lactide nanoparticles that fleetingly touch the cell’s phospholipid layer for around 100ms to release their cargo, in this case a hydrophobic dye that was left to stain the cell membrane, before quickly detaching from the cell – hence the term ‘kiss-and-run.’ They later found that the dye, representing water-insoluble drug cargo, was ultimately stored as lipid droplets within the cell.


Read the full article in Chemistry World»

Read the original journal article in ChemComm:
Drug delivery without nanoparticle uptake: delivery by a kiss-and-run mechanism on the cell membrane
Daniel Hofmann, Claudia Messerschmidt, Markus B. Bannwarth, Katharina Landfester and Volker Mailänder  
Chem. Commun., 2014, Advance Article, DOI: 10.1039/C3CC48130A

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Chem Sci, ChemComm and Chem Soc Rev poster prizes awarded at J400 chemonostics symposium

Congratulations to our Chemical Science, ChemComm and Chem Soc Rev poster prize winners at Chemonostics: Chemical receptors in the development of simple diagnostic devices, a one-day symposium held in Bath, UK on 28 November 2013.  The event, organised by Professor Tony James from the University of Bath, was held to celebrate 400 years of Japan-British relations.  Our Editor Dr Robert Eagling was on hand to award the prizes.

J400 at Bath - Chemonostics

(Left to right) Giles Prentice, Rama Byravan, Robert Eagling, Xiaolong Sun

The RSC poster prizes were awarded to:

Giles Prentice (Bath) – Chem Soc Rev poster prize
Rama Byravan (Birmingham) – Chemical Science poster prize
Xiaolong Sun (Bath) – ChemComm poster prize

Once again, our warmest congratulations to all our winners!

Read J400: our cross-journal online collection celebrating the 400th anniversary of Japan-British relations

You may also be interested in our web collection dedicated to Professor Seiji Shinkai on the occasion of his 70th birthday

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Steering cells towards biocomputers

Bacterial toxins that undergo unique cell interactions have been used to perform logic functions by researchers in Germany. In a similar way to how we store letters and words on computer disks, these proteins provide a new approach to storing information within whole cells.

The three components of the enterotoxin must bind to the cell membrane in a specific order to activate the logic gate

Synthetic biologists have already modified the genetic code of cells to create biocircuits capable of performing specific Boolean logic functions, for example AND gates and OR gates, for sensing, diagnostics and therapeutics. These genetic logic gates require sophisticated and extensive modifications of the cell DNA. Now, Erwin Märtlbauer and his team at the University of Munich have developed a comparably simple approach where proteins interact with the membrane of whole cells to produce a variety of combinatorial and sequential logic operators.

A unique enterotoxin protein made up of three components that must individually bind in a specific order to the cell membrane to cause cell death is central to Märtlbauer’s system. By using this sequential binding as the input of the logic gate and cell death as the output the team have created a logic operator with memory that is similar to a keypad lock, where unless the right key is pressed in the right order nothing will happen.


Read the full article in Chemistry World»

Read the original journal article in ChemComm:
Ordered self-assembly of proteins for computation in mammalian cells
Kui Zhu, Jianzhong Shen, Richard Dietrich, Andrea Didier, Xingyu Jiang and Erwin Märtlbauer  
Chem. Commun., 2014, Advance Article, DOI: 10.1039/C3CC48100J

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Nominate a colleague this week: ChemComm Emerging Investigator Lectureships 2014

This week is your last chance to nominate a colleague for the ChemComm Emerging Investigator Lectureships 2014.

Nominate by Friday 6th December 2013

The lectureships recognise emerging scientists in the early stages of their independent academic career. 2014 marks the 50th volume of ChemComm and in celebration of this very special anniversary we will be awarding three ChemComm Emerging Investigator Lectureships next year. So nominate a colleague today! 

To qualify
To be eligible for the ChemComm Emerging Investigator Lectureship, the candidate should have completed their PhD on or after 4th September 2005. The candidate should also have published at least one article in ChemComm during the course of their independent career.  

Award details
The recipient of the award will be invited to present a lecture at three different locations over a 12 month period. It is expected that at least one of the locations will be a conference. The recipient will receive a contribution of £1500 towards travel and accommodation costs. S/he will also be presented with a certificate and be asked to contribute a ChemComm Feature Article. 

Nominations
Those wishing to make a nomination should send the following details to the ChemComm Editorial Office by Friday 6th December 2013:  

  • Recommendation letter, including the name, contact details and website URL of the nominee.  
  • A one page CV for the nominee, including their date of birth, summary of education and career, list of up to five independent publications, total numbers of publications and patents and other indicators of esteem and evidence of independence.
  • A copy of the candidate’s best publication to date (as judged by the nominator).
  • Two supporting letters of recommendation from two independent referees. These should not be someone from the same institution or the candidate’s post doc or PhD supervisor.

The nominator and independent referees are requested to comment on the candidate’s presenting skills.  

Please note that self nomination is not permitted. 

Selection procedure
The ChemComm Editorial Board will draw up a short-list of candidates based on the information provided by the referees and nominator. Short-listed candidates will be asked to provide a supporting statement justifying why they deserve the award. The recipients of the award will then be selected and endorsed by the ChemComm Editorial Board, and will be announced in Spring 2014. 

Previous winners

2013    Professor Louise A. Berben (University of California Davis, USA) for synthetic and physical inorganic chemistry, who will give a plenary lecture at ISACS 13 in Dublin.
2013    Dr Marina Kuimova (Imperial College London, UK) for biophysical chemistry who will give her Lectureship in 2014.
2012 Professor Hiromitsu Maeda (Ritsumeikan University, Japan) – he was presented with his lecture certificate at ICPOC 21.
2011   Dr Scott Dalgarno (Heriot-Watt University, Edinburgh, UK) – Find out about his Emerging Investigator Lecture tour in China.
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)