Archive for February, 2013

23rd International Symposium: Synthesis in Organic Chemistry

The deadline for submitting poster abstracts for the 23rd International Symposium: Synthesis in Organic Chemistry is fast approaching – 11 March 2013.

The Synthesis in Organic Chemistry conference is the flagship event of the RSC’s Organic Division. This conference will provide an international showcase for the core area of organic chemistry – synthesis – covering all aspects of contemporary organic synthesis and providing a forum for the ever more exciting methodologies and strategies that continue to emerge.

Don’t miss out – reserve your poster presentation space for a chance to showcase your own work, and register early to take advantage of the £50 saving on the standard fee.

Remember too that there are a limited number of bursaries on offer for students and younger members of the RSC in the early stages of their career – worth £150.

Make sure you take the opportunity to join us to hear outstanding speakers across the many themes of the symposium in an extremely stimulating programme of plenary and keynote lectures.

Check out the event website to find out more – http://rsc.li/os23

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Combating Influenza: Anthraquinone–Sialic Acid Hybrids for the Inhibition of Viral Neuraminidase

In the fight against influenza, viral neuraminidase (NA) represents an important target. This enzyme is essential for the replication of the virus, and its inhibition can prevent the spread of the disease. Scientists at Keio University have now identified a set of novel anthraquinone–sialic acid hybrids which can inhibit influenza virus neuraminidase with photo-irradiation under neutral conditions.

Anthraquinone derivatives were found to degrade proteins when subjected to photo-irradiation; this degradation is likely caused by hydroxy radicals which are produced from the photolysis of anthraquinone and oxygen. Crucially, researchers led by Prof. Kazunobu Toshima proposed that NA-inhibition could be obtained if such an anthraquinone derivative could be tethered to an NA-binding moiety. Sialic acid is a native ligand for NA— both “normal” NA and drug-resistant NA— and so researchers prepared and investigated a number of anthraquinone–sialic acid hybrids (1–3).

These hybrids were found to be effective for the inhibition of NA under photo-irradiation, and interestingly, showed comparable or superior results compared to the leading anti-NA drug, especially in the inhibition of drug-resistant NA. While further tests are ongoing, this research represents an important advance in influenza treatment, and offers great potential for the inhibition of other disease targets.

For more, read this ‘HOT’ ChemComm article in full:

Photodegradation and inhibition of drug-resistant influenza virus neuraminidase using anthraquinone–sialic acid hybrids

Yusuke Aoki,  Shuho Tanimoto,  Daisuke Takahashi and Kazunobu Toshima
Chem. Commun., 2013, 49, 1169–1171
DOI: 10.1039/C2CC38742E
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

A new system for cancer detection

While current cancer-diagnosis methods rely on an invasive biopsy or the detection of cancer-specific biomarkers, South Korean scientists have developed a simple and non-invasive detector for cancer cells that could speed up the early diagnosis of the condition, leading to a greater chance of survival for cancer patients.

Cancer cells fluorescing

Daunomycin interacting cancer cells viewed with fluorescene microscopy

Cancer cells have been found to differ from normal cells in several ways, including the make up of their cell membranes. Cancer-cell membranes have been found to contain more anionic lipids than normal cells, leading to an overall negatively charged cell surface. Yoon-Bo Shim and co-workers from Pusan National University, have exploited this negative surface charge to develop a probe based on daunomycin, an anti-cancer drug that is known to interact strongly with anionic lipids.

Read the full article in Chemistry World.

Read the original journal article:
Cancer cell detection based on the interaction between an anticancer drug and cell membrane components
Chem. Commun., 2013, 49, 1900-1902
DOI: 10.1039/C2CC38235K

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)