Archive for the ‘Themed Issue’ Category

Profile: Matt Webber, 2017 Biomaterials Science Emerging Investigator

Profile: Matt Webber, 2017 Biomaterials Science Emerging Investigator

This week’s issue of Biomaterials Science is our 2019 Emerging Investigators issue, which contains reviews and research articles from biomaterials scientists in the early stages of their independent careers. The 2019 Biomaterials Science Emerging Investigators were individually nominated by members of the journal Editorial and Advisory Boards, and previous Emerging Investigators, in recognition of their potential to influence future directions in the biomaterials field. The issue is accompanied by an Editorial from Editor-in-Chief Jennifer Elisseeff, which discusses some of the great work on display, and contains biographies and photos of the contributors.

In order to celebrate this issue, we are delighted to feature a profile of one of the researchers from our 2017 Emerging Investigators issue, Matt Webber. Matt talks below about how his research has progressed since being featured as a Biomaterials Science Emerging Investigator.

“It was a great honor to have been included as a 2017 Emerging Investigator. When I was selected for this honor, my team had not even moved into our lab space and I had just started my independent position. I was surprised people even knew who I was, but of course I accepted! We had access to a peptide synthesizer, and went about devising a project that would be possible to complete on a short timeline with limited resources. We begun by investigating the self-assembly of a series of tripeptides, which we designed to be amphiphilic with a variable residue positioned in the center of an aromatic group and a charged group. We thought some sequences might self-assemble, but in a stroke of pure serendipity we were fortunate to discover the emergence of 5 unique nanostructures from these five different sequences. This was very exciting, leading my group to continue to explore the self-assembly of minimal peptide sequences. This initial work published in Biomaterials Science resulted in a follow-up paper published in 2018 in Soft Matter and several other forthcoming works and invited presentations. Strangely enough, we may never have done this work or pursued this line of research if it were not for the opportunity to participate in the 2017 Emerging Investigator issue. I am grateful to Biomaterials Science for this honor, and for nucleating a great start to my research group.”

 

Biography
Matthew J. Webber is an Assistant Professor in the Department of Chemical & Biomolecular Engineering at the University of Notre Dame, with a concurrent appointment in the Department of Chemistry and Biochemistry. His research group is interested in applying supramolecular principles, leveraging defined and rationally designed non-covalent interactions, to improve therapeutic materials. He is specifically curious about the use of supramolecular design to overcome barriers in drug delivery and improve biomedical materials. Prof. Webber received a BS in Chemical Engineering from the University of Notre Dame, and MS and PhD degrees in Biomedical Engineering from Northwestern University. His dissertation, performed in the laboratory of Prof. Samuel Stupp, focused on the use supramolecular peptide assemblies for cardiovascular disease therapeutics. Subsequently, he was an NIH NRSA postdoctoral fellow in the laboratories of Prof. Robert Langer and Prof. Daniel Anderson at MIT, working on the development of new molecular engineering approaches toward the treatment of diabetes. His research passion is to contribute to bringing the field of Supramolecular Therapeutics into prominence. He has authored 56 peer-reviewed papers and is inventor on 7 pending or awarded patents. In 2017, he was named by Biomaterials Science as an Emerging Investigator and by the American Institute of Chemical Engineers (AIChE) as one of the “35 under 35” young leaders shaping the field.

Matt’s papers will be free to access on our publishing platform for 6 weeks.

We hope you enjoy reading all the contributions to our 2019 Emerging Investigators collection, and we thank all the nominators and authors for their input.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Polymeric biomaterials for cancer nanotechnology themed issue now online

We are delighted to announce that the Polymeric biomaterials for cancer nanotechnology themed issue is now available online.

Polymeric biomaterials for cancer nanotechnology

Guest Edited by Jianjun Cheng (University of Illinois at Urbana-Champaign, USA) and Suzie H. Pun (University of Washington, USA), this themed issue highlights the latest discoveries and innovations in polymeric biomaterials for cancer nanotechnology.

Polymeric biomaterials have been extensively used in nanomedicine formulations for cancer therapy. Preclinical and clinical studies have in general revealed that polymeric nanocarriers, when used for chemotherapeutic drug delivery, reduce systemic toxicity and thus mitigate adverse side effects of the drug. This themed issue contains reviews and research articles in the areas of: (i) expanding the available suite of polymeric biomaterials that can be reproducibly and controllably manufactured at a suitable scale, (ii) designing carriers with improved biodistribution to tumour sites, (iii) increasing tumour distribution and penetration of polymeric nanocarriers, and (iv) controlling efficient drug release at a desired location and with optimal kinetics.

Read all the themed issue papers here

A few articles from the themed issue are highlighted below:

Drug-free macromolecular therapeutics – a new paradigm in polymeric nanomedicines
Te-Wei Chu and Jindřich Kopeček
Biomater. Sci., 2015,3, 908-922

Lipid-coated polymeric nanoparticles for cancer drug delivery
Sangeetha Krishnamurthy, Rajendran Vaiyapuri, Liangfang Zhang and Juliana M. Chan
Biomater. Sci., 2015, 3, 923-936

Enhanced transcellular penetration and drug delivery by crosslinked polymeric micelles into pancreatic multicellular tumor spheroids
Hongxu Lu, Robert H. Utama, Uraiphan Kitiyotsawat, Krzysztof Babiuch, Yanyan Jiang and Martina H. Stenzel
Biomater. Sci., 2015, 3, 1085-1095

Polymeric assembly of hyperbranched building blocks to establish tunable nanoplatforms for lysosome acidity-responsive gene/drug co-delivery
Hui-Zhen Jia, Wei Zhang, Xu-Li Wang, Bin Yang, Wei-Hai Chen, Si Chen, Gang Chen, Yi-Fang Zhao, Ren-Xi Zhuo, Jun Feng and Xian-Zheng Zhang
Biomater. Sci., 2015,3, 1066-1077

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Themed collection for Michael Sefton’s 65th birthday

Nicholas Peppas (University of Texas) introduces our latest themed collection, put together in celebration of Michael Sefton’s 65th birthday.

I am delighted to express my thoughts on the occasion of this special collection in honor of Michael V. Sefton of the University of Toronto. Michael has been a friend for 44 years and has been a source of inspiration for several generations of biomaterials scientists, biomedical engineers, chemical engineers and polymer scientists.  He has been a leader in the fields of biomaterials, regenerative medicine and tissue engineering for the past 40 years.  Michael is recognized for seminal contributions to biomaterials science, regenerative medicine and tissue engineering, for development of novel methods for diabetes treatment and for visionary international leadership of the field of biomedical engineering.

Michael Sefton was born 65 years ago, on October 20, 1949, in London, United Kingdom. At a young age, the family left the UK and came to Canada where Michael, his brother and sister grew up in a loving family, always excelling. He entered the Chemical Engineering Department of the University of Toronto in 1967 and had the fortune to be educated by leading scientists in polymer science and artificial organs. This combination of the two areas led to his decision to pursue a graduate degree in chemical engineering, concentrating on biomaterials. So, we both arrived to the Massachusetts Institute of Technology (MIT) in August 1971 and we started working in the Chemical Engineering Department, he as a research assistant of Ken Smith, I as a volunteer in Ed Merrill’s laboratory. As all loyal students working on biomaterials those days did, we took courses such as 10.68 “Physical Chemistry of Polymers”, 10.64 “Structure and Properties of Polymers” and 10.69 “Polymerization Reactions”, along with 2.905 “Biomaterials” and the famous 10.56 “Chemical Engineering in Medicine”, the legendary course introduced to the curriculum 50 years ago by Ed Merrill and taught by his former PhD student (and our academic brother), the young Clark Colton.

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Stem cell-materials interactions themed issue now online

Graphical abstract: Front coverWe hope you enjoy reading our latest themed issue on stem cell—materials interactions, Guest Edited by Matthias Lutolf (EPFL) and Jason Burdick (University of Pennsylvania).

Stem cells have an enormous potential in regenerative medicine and drug discovery but the development of stem cell based therapies and models in these fields has been slow. This is largely due to the difficulty of maintaining functional stem cells in a culture dish or controlling their directed differentiation. Naturally, stem cells reside in highly complex microenvironments (termed ‘niches’) that regulate their behavior.

This themed issue focuses on emerging efforts to engineer these niches to better control and probe stem cell fate in culture and in vivo, including the development of new biomaterials, the better understanding of stem cell and biomaterial interfaces, and the implementation of biomaterials and bioreactors together.

Take a look at these themed issue highlights:

Nanotopography – potential relevance in the stem cell niche Lesley-Anne Turner and Matthew J. Dalby

Biophysical regulation of hematopoietic stem cells C. Lee-Thedieck and J. P. Spatz

Stem cell culture using cell-derived substrates Binata Joddar, Takashi Hoshiba, Guoping Chen and Yoshihiro Ito

Chemically diverse polymer microarrays and high throughput surface characterisation: a method for discovery of materials for stem cell culture A. D. Celiz, J. G. W. Smith, A. K. Patel, R. Langer, D. G. Anderson, D. A. Barrett, L. E. Young, M. C. Davies, C. Denning and M. R. Alexander

Dual-stage growth factor release within 3D protein-engineered hydrogel niches promotes adipogenesis Midori Greenwood-Goodwin, Eric S. Teasley and Sarah C. Heilshorn

Artificial microniches for probing mesenchymal stem cell fate in 3DYujie Ma, Martin P. Neubauer, Julian Thiele, Andreas Fery and W. T. S. Huck

Download more articles here

Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)

Emerging Investigators themed issue now published

We are pleased to announce that the Biomaterials Science 2014 Emerging Investigators themed issue is now available to read online.

Edited by Phillip Messersmith and Norio Nakatsuji, co-Editors in Chief of Biomaterials Science, this issue highlights the exciting and important work being carried out by some of the most talented up-and-coming researchers in the field.  Read more about the issue in the Editorial.

Here is a sample of the reviews, communications and papers that feature in the Emerging Investigators themed issue:

On the cover

Fabrication of zeolite–polymer composite nanofibers for removal of uremic toxins from kidney failure patients Koki Namekawa, Makoto Tokoro Schreiber, Takao Aoyagi and Mitsuhiro Ebara 

 
Review
Smart hydrogels as functional biomimetic systems Han L. Lim, Yongsung Hwang, Mrityunjoy Kar and Shyni Varghese 
 
Minireviews
Peptoids for biomaterials science King Hang Aaron Lau 
 
Communications
 
Hyaluronic acid hydrogel stiffness and oxygen tension affect cancer cell fate and endothelial sprouting Yu-I Shen, Hasan E. Abaci, Yoni Krupski, Lien-Chun Weng, Jason A. Burdick and Sharon Gerecht
 
Papers
Translocation of flexible polymersomes across pores at the nanoscale Carla Pegoraro, Denis Cecchin, Jeppe Madsen, Nicholas Warren, Steven P. Armes, Sheila MacNeil, Andrew Lewis and Giuseppe Battaglia
 
Structural reinforcement of cell-laden hydrogels with microfabricated three dimensional scaffolds Chaenyung Cha, Pranav Soman, Wei Zhu, Mehdi Nikkhah, Gulden Camci-Unal, Shaochen Chen and Ali Khademhosseini
 
Integrative and comparative analysis of coiled-coil based marine snail egg cases – a model for biomimetic elastomers Paul A. Guerette, Gavin Z. Tay, Shawn Hoon, Jun Jie Loke, Arif F. Hermawan, Clemens N. Z. Schmitt, Matthew J. Harrington, Admir Masic, Angelo Karunaratne, Himadri S. Gupta, Koh Siang Tan, Andreas Schwaighofer, Christoph Nowak and Ali Miserez
 
 
Molecular farming of fluorescent virus-based nanoparticles for optical imaging in plants, human cells and mouse models S. Shukla, C. Dickmeis, A. S. Nagarajan, R. Fischer, U. Commandeur and N. F. Steinmetz 
 
More papers from the themed issue can be downloaded here.
 
Digg This
Reddit This
Stumble Now!
Share on Facebook
Bookmark this on Delicious
Share on LinkedIn
Bookmark this on Technorati
Post on Twitter
Google Buzz (aka. Google Reader)